Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Iizuka is active.

Publication


Featured researches published by Ryo Iizuka.


Analytical Biochemistry | 2011

Kinetic study of de novo chromophore maturation of fluorescent proteins

Ryo Iizuka; Mai Yamagishi-Shirasaki; Takashi Funatsu

Green fluorescent protein (GFP) has a chromophore that forms autocatalytically within the folded protein. Although many studies have focused on the precise mechanism of chromophore maturation, little is known about the kinetics of de novo chromophore maturation. Here we present a simple and efficient method for examining the de novo kinetics. GFP with an immature chromophore was synthesized in a reconstituted cell-free protein synthesis system under anaerobic conditions. Chromophore maturation was initiated by rapid dilution in an air-saturated maturation buffer, and the time course of fluorescence development was monitored. Comparison of the de novo maturation rates in various GFP variants revealed that some folding mutations near the chromophore promoted rapid chromophore maturation and that the accumulation of mutations could reduce the maturation rate. Our method will contribute to the design of rapidly maturing fluorescent proteins with improved characteristics for real-time monitoring of cellular events.


Journal of Biological Chemistry | 2003

ATP Binding Is Critical for the Conformational Change from an Open to Closed State in Archaeal Group II Chaperonin

Ryo Iizuka; Takao Yoshida; Yasuhito Shomura; Kunio Miki; Tadashi Maruyama; Masafumi Odaka; Masafumi Yohda

Group II chaperonins, found in archaea and in eukaryotic cytosol, do not have a co-chaperonin corresponding to GroES. Instead, it is suggested that the helical protrusion extending from the apical domain acts as a built-in lid for the central cavity and that the opening and closing of the lid is regulated by ATP binding and hydrolysis. However, details of this conformational change remain unclear. To investigate the conformational change associated with the ATP-driven cycle, we conducted protease sensitivity analyses and tryptophan fluorescence spectroscopy of α-chaperonin from a hyperthermophilic archaeum, Thermococcus strain KS-1. In the nucleotide-free or ADP-bound state, the chaperonin, especially in the helical protrusion region, was highly sensitive to proteases. Addition of ATP and ammonium sulfate induced the transition to the relatively protease-resistant form. The fluorescence intensity of the tryptophan residue introduced at the tip of the helical protrusion was enhanced by the presence of ATP or ammonium sulfate. We conclude that ATP binding induces the conformational change from the lid-open to lid-closed form in archaeal group II chaperonin.


Journal of Biological Chemistry | 2008

Football- and Bullet-shaped GroEL-GroES Complexes Coexist during the Reaction Cycle

Tomoya Sameshima; Taro Ueno; Ryo Iizuka; Noriyuki Ishii; Naofumi Terada; Kohki Okabe; Takashi Funatsu

GroEL is an Escherichia coli chaperonin that is composed of two heptameric rings stacked back-to-back. GroEL assists protein folding with its cochaperonin GroES in an ATP-dependent manner in vitro and in vivo. However, it is still unclear whether GroES binds to both rings of GroEL simultaneously under physiological conditions. In this study, we monitored the GroEL-GroES interaction in the reaction cycle using fluorescence resonance energy transfer. We found that nearly equivalent amounts of symmetric GroEL-(GroES)2 (football-shaped) complex and asymmetric GroEL-GroES (bullet-shaped) complex coexist during the functional reaction cycle. We also found that D398A, an ATP hydrolysis defective mutant of GroEL, forms a football-shaped complex with ATP bound to the two rings. Furthermore, we showed that ADP prevents the association of ATP to the trans-ring of GroEL, and as a consequence, the second GroES cannot bind to GroEL. Considering the concentrations of ADP and ATP in E. coli, ADP is expected to have a small effect on the inhibition of GroES binding to the trans-ring of GroEL in vivo. These results suggest that we should reconsider the chaperonin-mediated protein-folding mechanism that involves the football-shaped complex.


Biochemical Journal | 2010

Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex.

Tomoya Sameshima; Ryo Iizuka; Taro Ueno; Takashi Funatsu

Controversy exists over whether the chaperonin GroEL forms a GroEL-(GroES)2 complex (football-shaped complex) during its reaction cycle. We have revealed previously the existence of the football-shaped complex in the chaperonin reaction cycle using a FRET (fluorescence resonance energy transfer) assay [Sameshima, Ueno, Iizuka, Ishii, Terada, Okabe and Funatsu (2008) J. Biol. Chem. 283, 23765-23773]. Although denatured proteins alter the ATPase activity of GroEL and the dynamics of the GroEL-GroES interaction, the effect of denatured proteins on the formation of the football-shaped complex has not been characterized. In the present study, a FRET assay was used to demonstrate that denatured proteins facilitate the formation of the football-shaped complex. The presence of denatured proteins was also found to increase the rate of association of GroES to the trans-ring of GroEL. Furthermore, denatured proteins decrease the inhibitory influence of ADP on ATP-induced association of GroES to the trans-ring of GroEL. From these findings we conclude that denatured proteins facilitate the dissociation of ADP from the trans-ring of GroEL and the concomitant association of ATP and the second GroES.


Nucleic Acids Research | 2008

Single-molecule imaging of full protein synthesis by immobilized ribosomes

Sotaro Uemura; Ryo Iizuka; Taro Ueno; Yoshihiro Shimizu; Hideki Taguchi; Takuya Ueda; Joseph D. Puglisi; Takashi Funatsu

How folding of proteins is coupled to their synthesis remains poorly understood. Here, we apply single-molecule fluorescence imaging to full protein synthesis in vitro. Ribosomes were specifically immobilized onto glass surfaces and synthesis of green fluorescent protein (GFP) was achieved using modified commercial Protein Synthesis using Recombinant Elements that lacked ribosomes but contained purified factors and enzyme that are required for translation in Escherichia coli. Translation was monitored using a GFP mutant (F64L/S65T/F99S/M153T/V163A) that has a high fluorophore maturation rate and that contained the Secretion Monitor arrest sequence to prevent dissociation from the ribosome. Immobilized ribosomal subunits were labeled with Cy3 and GFP synthesis was measured by colocalization of GFP fluorescence with the ribosome position. The rate of appearance of colocalized ribosome GFP was equivalent to the rates of fluorescence appearance coupled with translation measured in bulk, and the ribosome–polypeptide complexes were stable for hours. The methods presented here are applicable to single-molecule investigation of translational initiation, elongation and cotranslational folding.


Journal of Molecular Biology | 2008

Structure and Molecular Dynamics Simulation of Archaeal Prefoldin: The Molecular Mechanism for Binding and Recognition of Nonnative Substrate Proteins

Akashi Ohtaki; Hiroshi Kida; Yusuke Miyata; Naoki Ide; Akihiro Yonezawa; Takatoshi Arakawa; Ryo Iizuka; Keiichi Noguchi; Akiko Kita; Masafumi Odaka; Kunio Miki; Masafumi Yohda

Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 A resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the beta subunit is essentially involved in substrate binding and that the alpha subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the beta subunit in the hydrophobic groove have shown that beta Ile107 has a critical role in forming the hydrophobic groove.


Journal of Biological Chemistry | 2005

Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: Implications that group II chaperonins operate as a "two-stroke engine"

Ryo Iizuka; Takao Yoshida; Noriyuki Ishii; Tamotsu Zako; Kazunobu Takahashi; Kosuke Maki; Tomonao Inobe; Kunihiro Kuwajima; Masafumi Yohda

Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lids conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on α-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that α-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that α-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced α-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, α-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.


Journal of Biological Chemistry | 2010

Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides

Tomoya Sameshima; Ryo Iizuka; Taro Ueno; Junichi Wada; Mutsuko Aoki; Naonobu Shimamoto; Iwao Ohdomari; Takashi Tanii; Takashi Funatsu

It has been widely believed that an asymmetric GroEL-GroES complex (termed the bullet-shaped complex) is formed solely throughout the chaperonin reaction cycle, whereas we have recently revealed that a symmetric GroEL-(GroES)2 complex (the football-shaped complex) can form in the presence of denatured proteins. However, the dynamics of the GroEL-GroES interaction, including the football-shaped complex, is unclear. We investigated the decay process of the football-shaped complex at a single-molecule level. Because submicromolar concentrations of fluorescent GroES are required in solution to form saturated amounts of the football-shaped complex, single-molecule fluorescence imaging was carried out using zero-mode waveguides. The single-molecule study revealed two insights into the GroEL-GroES reaction. First, the first GroES to interact with GroEL does not always dissociate from the football-shaped complex prior to the dissociation of a second GroES. Second, there are two cycles, the “football cycle ” and the “bullet cycle,” in the chaperonin reaction, and the lifetimes of the football-shaped and the bullet-shaped complexes were determined to be 3–5 s and about 6 s, respectively. These findings shed new light on the molecular mechanism of protein folding mediated by the GroEL-GroES chaperonin system.


Journal of Biological Chemistry | 2008

Effect of the C-terminal Truncation on the Functional Cycle of Chaperonin GroEL IMPLICATION THAT THE C-TERMINAL REGION FACILITATES THE TRANSITION FROM THE FOLDING-ARRESTED TO THE FOLDING-COMPETENT STATE

Mihoko Suzuki; Taro Ueno; Ryo Iizuka; Takahiro Miura; Tamotsu Zako; Rena Akahori; Takeo Miyake; Naonobu Shimamoto; Mutsuko Aoki; Takashi Tanii; Iwao Ohdomari; Takashi Funatsu

To elucidate the exact role of the C-terminal region of GroEL in its functional cycle, the C-terminal 20-amino acid truncated mutant of GroEL was constructed. The steady-state ATPase rate and duration of GroES binding showed that the functional cycle of the truncated GroEL is extended by ∼2 s in comparison with that of the wild type, without interfering with the basic functions of GroEL. We have proposed a model for the functional cycle of GroEL, which consists of two rate-limiting steps of ∼3- and ∼5-s duration ( Ueno, T., Taguchi, H., Tadakuma, H., Yoshida, M., and Funatsu, T. (2004) Mol. Cell 14, 423-434 g). According to the model, detailed kinetic studies were performed. We found that a 20-residue truncation of the C terminus extends the time until inorganic phosphate is generated and the time for arresting protein folding in the central cavity, i.e. the lifetime of the first rate-limiting step in the functional cycle, to an ∼5-s duration. These results suggest that the integrity of the C-terminal region facilitates the transition from the first to the second rate-limiting state.


Proteins | 2008

Role of the IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, Sulfolobus tokodaii strain 7

Hitoshi Saji; Ryo Iizuka; Takao Yoshida; Tetsuya Abe; Shun-ichi Kidokoro; Noriyuki Ishii; Masafumi Yohda

Small heat shock proteins (sHsps) are one of the most ubiquitous molecular chaperones. They are grouped together based on a conserved domain, the α‐crystallin domain. Generally, sHsps exist as oligomers of 9–40 subunits, and the oligomers undergo reversible temperature‐dependent dissociation into smaller species as dimers, which interact with denaturing substrate proteins. Previous studies have shown that the C‐terminal region, especially the consensus IXI/V motif, is responsible for oligomer assembly. In this study, we examined deletions or mutations in the C‐terminal region on the oligomer assembly and function of StHsp14.0, an sHsp from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Mutated StHsp14.0 with C‐terminal deletion or replacement of IIe residues in the IXI/V motif to Ala, Ser, or Phe residues could not form large oligomers and lost chaperone activity. StHsp14.0WKW, whose Ile residues in the IXI/V motif are changed to Trp, existed as an oligomer like that of the wild type. However, it dissociates to small oligomers and exhibits chaperone activity at relatively lowered temperature. Replacement of two Ile residues in the motif to relatively small residues, Ala or Ser, also resulted in the change of β‐sheet rich secondary structure and decrease of hydrophobicity. Interestingly, StHsp14.0 mutant with amino acid replacements to Phe kept almost the same secondary structure and relatively high hydrophobicity despite that it could not form an oligomeric structure. The results show that hydrophobicity and size of the amino acids in the IXI/V motif in the C‐terminal region are responsible not only for assembly of the oligomer but also for the maintenance of β‐sheet rich secondary structure and hydrophobicity, which are important for the function of sHsp. Proteins 2008.

Collaboration


Dive into the Ryo Iizuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masafumi Yohda

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takao Yoshida

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge