Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjay Rajagopalan is active.

Publication


Featured researches published by Sanjay Rajagopalan.


Circulation | 2010

Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association

Robert D. Brook; Sanjay Rajagopalan; C. Arden Pope; Jeffrey R. Brook; Aruni Bhatnagar; Ana V. Diez-Roux; Fernando Holguin; Yuling Hong; Russell V. Luepker; Murray A. Mittleman; Annette Peters; David S. Siscovick; Sidney C. Smith; Laurie Whitsel; Joel D. Kaufman

In 2004, the first American Heart Association scientific statement on “Air Pollution and Cardiovascular Disease” concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 &mgr;m in diameter (PM2.5) over a few hours to weeks can trigger cardiovascular disease–related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM2.5 exposure is deemed a modifiable factor that contributes to cardiovascular morbidity and mortality.


Journal of Clinical Investigation | 1996

Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone.

Sanjay Rajagopalan; Sabine Kurz; Thomas Münzel; Margaret M. Tarpey; Bruce A. Freeman; Kathy K. Griendling; David G. Harrison

We tested the hypothesis that angiotensin II-induced hypertension is associated with an increase in vascular .O2- production, and characterized the oxidase involved in this process. Infusion of angiotensin II (0.7 mg/kg per d) increased systolic blood pressure and doubled vascular .O2- production (assessed by lucigenin chemiluminescence), predominantly from the vascular media. NE infusion (2.75 mg/kg per d) produced a similar degree of hypertension, but did not increase vascular .O2- production. Studies using various enzyme inhibitors and vascular homogenates suggested that the predominant source of .O2- activated by angiotensin II infusion is an NADH/NADPH-dependent, membrane-bound oxidase. Angiotensin II-, but not NE-, induced hypertension was associated with impaired relaxations to acetylcholine, the calcium ionophore A23187, and nitroglycerin. These relaxations were variably corrected by treatment of vessels with liposome-encapsulated superoxide dismutase. When Losartan was administered concomitantly with angiotensin II, vascular .O2- production and relaxations were normalized, demonstrating a role for the angiotensin type-1 receptor in these processes. We conclude that forms of hypertension associated with elevated circulating levels of angiotensin II may have unique vascular effects not shared by other forms of hypertension because they increase vascular smooth muscle .O2- production via NADH/NADPH oxidase activation.


Circulation | 1997

Role of Superoxide in Angiotensin II–Induced but Not Catecholamine-Induced Hypertension

Jørn Bech Laursen; Sanjay Rajagopalan; Zorina S. Galis; Margaret M. Tarpey; Bruce A. Freeman; David G. Harrison

BACKGROUND The major source of superoxide (.O2-) in vascular tissues is an NADH/NADPH-dependent, membrane-bound oxidase. We have previously shown that this oxidase is activated in angiotensin II-but not norepinephrine-induced hypertension. We hypothesized that hypertension associated with chronically elevated angiotensin II might be caused in part by vascular .O2- production. METHODS AND RESULTS We produced hypertension in rats by a 5-day infusion of angiotensin II or norepinephrine. Rats were also treated with liposome-encapsulated superoxide dismutase (SOD) or empty liposomes. Arterial pressure was measured in conscious rats under baseline conditions and during bolus injections of either acetylcholine or nitroprusside. Vascular .O2- production was assessed by lucigenin chemiluminescence. In vitro vascular relaxations were examined in organ chambers. Norepinephrine infusion increased blood pressure to a similar extent as angiotensin II infusion (179 +/- 5 and 189 +/- 4 mm Hg, respectively). In contrast, angiotensin II-induced hypertension was associated with increased vascular .O2- production, whereas norepinephrine-induced hypertension was not. Treatment with liposome-encapsulated SOD reduced blood pressure by 50 mm Hg in angiotensin II-infused rats while having no effect on blood pressure in control rats or rats with norepinephrine-induced hypertension. Similarly, liposome-encapsulated SOD enhanced in vivo hypotensive responses to acetylcholine and in vitro responses to endothelium-dependent vasodilators in angiotensin II-treated rats. CONCLUSIONS Hypertension caused by chronically elevated angiotensin II is mediated in part by .O2-, likely via degradation of endothelium-derived NO. Increased vascular .O2- may contribute to vascular disease in high renin/angiotensin II states.


Circulation Research | 1997

p22phox mRNA Expression and NADPH Oxidase Activity Are Increased in Aortas From Hypertensive Rats

Toshiki Fukui; Nobukazu Ishizaka; Sanjay Rajagopalan; Jørn Bech Laursen; Quinn Capers; W. Robert Taylor; David G. Harrison; Hector De Leon; Josiah N. Wilcox; Kathy K. Griendling

Recent studies suggest that superoxide production by the NADPH/NADH oxidase may be involved in smooth muscle cell growth and the pathogenesis of hypertension. We previously showed that angiotensin II (Ang II) activates a p22phoxbased NADPH/NADH oxidase in cultured rat vascular smooth muscle cells and in animals made hypertensive by infusion of Ang II. To investigate the mechanism responsible for this increased oxidase activity, we examined p22phox mRNA expression in rats made hypertensive by implanting an osmotic minipump that delivered Ang II (0.7 mg/kg per day). Blood pressure began to increase 3 days after the start of Ang II infusion and remained elevated for up to 14 days. Expression of p22phox mRNA in aorta was also increased after 3 days and reached a maximum increase of 338 +/- 41% by 5 days after pump implantation compared with the value after sham operation. This increase in mRNA expression was accompanied by an increase in the content of the corresponding cytochrome (twofold) and NADPH oxidase activity (179 +/- 11% of that in sham-operated rats 5 days after pump implantation). Treatment with the antihypertensive agents losartan (25 mg/kg per day) or hydralazine (15 mg/kg per day) inhibited this upregulation of mRNA levels and activity. Furthermore, infusion of recombinant heparin-binding superoxide dismutase decreased both blood pressure and p22phox mRNA expression. In situ hybridization of aortic tissue showed that p22phox mRNA was expressed in medial smooth muscle as well as in the adventitia. These findings suggest that Ang II-induced hypertension activates the NADPH/NADH oxidase system by upregulating mRNA levels of one or several components of this oxidase system, including the p22phox, and that the NADPH/NADH oxidase system is associated with the pathology of hypertension in vivo.


Circulation | 2003

Regional Angiogenesis With Vascular Endothelial Growth Factor in Peripheral Arterial Disease A Phase II Randomized, Double-Blind, Controlled Study of Adenoviral Delivery of Vascular Endothelial Growth Factor 121 in Patients With Disabling Intermittent Claudication

Sanjay Rajagopalan; Emile R. Mohler; Robert J. Lederman; Farrell O. Mendelsohn; Jorge F. Saucedo; Corey K. Goldman; John Blebea; Jennifer Macko; Paul D. Kessler; Henrik S. Rasmussen; Brian H. Annex

Background—“Therapeutic angiogenesis” seeks to improve perfusion by the growth of new blood vessels. The Regional Angiogenesis with Vascular Endothelial growth factor (RAVE) trial is the first major randomized study of adenoviral vascular endothelial growth factor (VEGF) gene transfer for the treatment of peripheral artery disease (PAD). Methods and Results—This phase 2, double-blind, placebo-controlled study was designed to test the efficacy and safety of intramuscular delivery of AdVEGF121, a replication-deficient adenovirus encoding the 121-amino-acid isoform of vascular endothelial growth factor, to the lower extremities of subjects with unilateral PAD. In all, 105 subjects with unilateral exercise-limiting intermittent claudication during 2 qualifying treadmill tests, with peak walking time (PWT) between 1 to 10 minutes, were stratified on the basis of diabetic status and randomized to low-dose (4×109 PU) AdVEGF121, high-dose (4×1010 PU) AdVEGF121, or placebo, administered as 20 intramuscular injections to the index leg in a single session. The primary efficacy end point, change in PWT (&Dgr;PWT) at 12 weeks, did not differ between the placebo (1.8±3.2 minutes), low-dose (1.6±1.9 minutes), and high-dose (1.5±3.1 minutes) groups. Secondary measures, including &Dgr;PWT, ankle-brachial index, claudication onset time, and quality-of-life measures (SF-36 and Walking Impairment Questionnaire), were also similar among groups at 12 and 26 weeks. AdVEGF121 administration was associated with increased peripheral edema. Conclusions—A single unilateral intramuscular administration of AdVEGF121 was not associated with improved exercise performance or quality of life in this study. This study does not support local delivery of single-dose VEGF121 as a treatment strategy in patients with unilateral PAD.


Journal of Clinical Investigation | 1996

Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug.

Thomas Münzel; Sabine Kurz; Sanjay Rajagopalan; M Thoenes; W R Berrington; J A Thompson; Bruce A. Freeman; David G. Harrison

Hydralazine has been shown to reduce mortality in patients with congestive heart failure when given concomitantly with isosorbide dinitrate. Recently, we demonstrated that nitrate tolerance is in part due to enhanced vascular superoxide .O2- production. We sought to determine mechanisms whereby hydralazine may prevent tolerance. Rabbits either received no treatment, nitroglycerin patches (1.5 micrograms/kg/min x 3 d), hydralazine alone (10 mg/kg/d in drinking water), or hydralazine and nitroglycerin. Aortic segments were studied in organ chambers and relative rates of vascular .O2- production were determined using lucigenin-enhanced chemiluminescence. Nitroglycerin treatment markedly inhibited relaxations to nitroglycerin (maximum relaxations in untreated: 92 +/- 1 vs. 64 +/- 3% in nitroglycerin-treated patients and increased vascular .O2- production by over two-fold (P < 0.05). Treatment with hydralazine in rabbits not receiving nitroglycerin significantly decreased .O2- production in intact rabbit aorta and increased sensitivity to nitroglycerin. When given concomitantly with nitroglycerin, hydralazine completely prevented the development of nitrate tolerance and normalized endogenous rates of vascular .O2- production. Studies of vessel homogenates demonstrated that the major source of .O2- was an NADH-dependent membrane-associated oxidase displaying activities of 67 +/- 12 vs. 28 +/- 2 nmol .O2-.min-1.mg protein-1 in nitroglycerin-treated vs. untreated aortic homogenates. In additional studies, we found that acute addition of hydralazine (10 microM) to nitroglycerin-tolerant vessels immediately inhibited .O2- production and NADH oxidase activity in vascular homogenates. The chemiluminescence signal was inhibited by a recombinant heparin-binding superoxide dismutase (HBSOD) demonstrating the specificity of this assay for .O2-. These observations suggest that a specific membrane-associated oxidase is activated by chronic nitroglycerin treatment, and the activity of this oxidase is inhibited by hydralazine, providing a mechanism whereby hydralazine may prevent tolerance. The ability of hydralazine to inhibit vascular .O2- anion production represents a novel mechanism of action for this drug.


Environmental Health Perspectives | 2005

Acute blood pressure responses in healthy adults during controlled air pollution exposures

Bruce Urch; Frances Silverman; Paul Corey; Jeffrey R. Brook; Karl Z. Lukic; Sanjay Rajagopalan; Robert D. Brook

Exposure to air pollution has been shown to cause arterial vasoconstriction and alter autonomic balance. Because these biologic responses may influence systemic hemodynamics, we investigated the effect of air pollution on blood pressure (BP). Responses during 2-hr exposures to concentrated ambient fine particles (particulate matter < 2.5 μm in aerodynamic diameter; PM2.5) plus ozone (CAP+O3) were compared with those of particle-free air (PFA) in 23 normotensive, non-smoking healthy adults. Mean concentrations of PM2.5 were 147 ± 27 versus 2 ± 2 μg/m3, respectively, and those of O3 were 121 ± 3 versus 8 ± 5 ppb, respectively (p < 0.0001 for both). A significant increase in diastolic BP (DBP) was observed at 2 hr of CAP+O3 [median change, 6 mm Hg (9.3%); binomial 95% confidence interval (CI), 0 to 11; p = 0.013, Wilcoxon signed rank test] above the 0-hr value. This increase was significantly different (p = 0.017, unadjusted for basal BP) from the small 2-hr change during PFA (median change, 1 mm Hg; 95% CI, −2 to 4; p = 0.24). This prompted further investigation of the CAP+O3 response, which showed a strong association between the 2-hr change in DBP (and mean arterial pressure) and the concentration of the organic carbon fraction of PM2.5 (r = 0.53, p < 0.01; r = 0.56, p < 0.01, respectively) but not with total PM2.5 mass (r ≤ 0.25, p ≥ 0.27). These findings suggest that exposure to environmentally relevant concentrations of PM2.5 and O3 rapidly increases DBP. The magnitude of BP change is associated with the PM2.5 carbon content. Exposure to vehicular traffic may provide a common link between our observations and previous studies in which traffic exposure was identified as a potential risk factor for cardiovascular disease.


Hypertension | 2013

Beyond Medications and Diet: Alternative Approaches to Lowering Blood Pressure: A Scientific Statement From the American Heart Association

Robert D. Brook; Lawrence J. Appel; Melvyn Rubenfire; Gbenga Ogedegbe; John D. Bisognano; William J. Elliott; Flávio Danni Fuchs; Joel W. Hughes; Daniel T. Lackland; Beth A. Staffileno; Raymond R. Townsend; Sanjay Rajagopalan

Many antihypertensive medications and lifestyle changes are proven to reduce blood pressure. Over the past few decades, numerous additional modalities have been evaluated in regard to their potential blood pressure–lowering abilities. However, these nondietary, nondrug treatments, collectively called alternative approaches, have generally undergone fewer and less rigorous trials. This American Heart Association scientific statement aims to summarize the blood pressure–lowering efficacy of several alternative approaches and to provide a class of recommendation for their implementation in clinical practice based on the available level of evidence from the published literature. Among behavioral therapies, Transcendental Meditation (Class IIB, Level of Evidence B), other meditation techniques (Class III, Level of Evidence C), yoga (Class III, Level of Evidence C), other relaxation therapies (Class III, Level of Evidence B), and biofeedback approaches (Class IIB, Level of Evidence B) generally had modest, mixed, or no consistent evidence demonstrating their efficacy. Between the noninvasive procedures and devices evaluated, device-guided breathing (Class IIA, Level of Evidence B) had greater support than acupuncture (Class III, Level of Evidence B). Exercise-based regimens, including aerobic (Class I, Level of Evidence A), dynamic resistance (Class IIA, Level of Evidence B), and isometric handgrip (Class IIB, Level of Evidence C) modalities, had relatively stronger supporting evidence. It is the consensus of the writing group that it is reasonable for all individuals with blood pressure levels >120/80 mm Hg to consider trials of alternative approaches as adjuvant methods to help lower blood pressure when clinically appropriate. A suggested management algorithm is provided, along with recommendations for prioritizing the use of the individual approaches in clinical practice based on their level of evidence for blood pressure lowering, risk-to-benefit ratio, potential ancillary health benefits, and practicality in a real-world setting. Finally, recommendations for future research priorities are outlined.


Hypertension | 1997

\E Role for Endothelin-1 in Angiotensin II– Mediated Hypertension

Sanjay Rajagopalan; Jørn Bech Laursen; Alain Borthayre; Sabine Kurz; Joan A. Keiser; Steven J. Haleen; Adel Giaid; David G. Harrison

Experiments in cultured vascular smooth muscle cells have shown that angiotensin II (Ang II) stimulates expression of endothelin-1. We sought to examine role of endothelin-1 in the effects of Ang II in vivo. Ang II infusion in rats (0.7 mg/kg per day for 5 days) was associated with marked increases in vascular smooth muscle endothelin-1 levels, as assessed by immunostaining. Administration of the selective endothelin type A (ET(A)) receptor antagonist PD 155080 (50 mg/kg per day) abrogated the hypertensive response to a 5-day infusion of Ang II (0.7 mg/kg per day), as did losartan (25 mg/kg per day). ET(A) receptor blockade during Ang II-mediated hypertension was associated with marked elevations of plasma endothelin-1 levels. Ang II-mediated hypertension was associated with heightened vascular responsiveness to a variety of vasoconstrictor agents except endothelin-1. Blockade of ET(A) receptor invariably corrected this vasoconstrictor hyperresponsiveness. We conclude that some of the vascular effects of Ang II thought to be unique to this hormone are likely mediated by endothelin-1.


Journal of The American Society of Hypertension | 2009

Particulate matter, air pollution, and blood pressure

Robert D. Brook; Sanjay Rajagopalan

A short-term increase in fine particulate matter air pollution (PM(2.5)) concentration increases the risk for myocardial infarctions, strokes, and heart failure exacerbations. An important mechanism likely contributing to these associations is an elevation in arterial blood pressure (BP). Exposure to ambient PM(2.5) even at present-day concentrations can increase BP within a period of a few days while long-term exposure might also promote the development of chronic hypertension. Controlled human and animal experiments have corroborated the veracity of these findings and elucidated plausible biological mechanisms. PM(2.5) deposition within the pulmonary tree is capable of rapidly triggering autonomic nervous system imbalance, thereby increasing BP within minutes of inhalation. In addition, fine particles can instigate a systemic pro-inflammatory response over a more prolonged period of exposure. Higher circulating levels of activated immune cells and inflammatory cytokines could consequently cause vascular endothelial dysfunction leading to an imbalance in vascular homeostatic responses. Indeed, chronic PM(2.5) exposure augments pro-vasoconstrictive pathways while blunting vasodilator capacity. Finally, certain particle constituents (e.g., metals, organic compounds, and ultra-fine particles) might also be capable of reaching the systemic circulation upon inhalation and thereafter directly impair vascular function. At the molecular level, the generation of oxidative stress with the consequent up-regulation of redox sensitive pathways appears to be a common and fundamental mechanism involved in the instigation of these pro-hypertensive responses. Due to the ubiquitous, continuous and often involuntary nature of exposure, PM(2.5) may be an important and under-appreciated worldwide environmental risk factor for increased arterial BP.

Collaboration


Dive into the Sanjay Rajagopalan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qinghua Sun

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jixin Zhong

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Zhekang Ying

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge