Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeo Yoshikawa is active.

Publication


Featured researches published by Takeo Yoshikawa.


Nature Genetics | 2009

Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.

Wataru Satake; Yuko Nakabayashi; Ikuko Mizuta; Yushi Hirota; Chiyomi Ito; Michiaki Kubo; Takahisa Kawaguchi; Tatsuhiko Tsunoda; Masahiko Watanabe; Atsushi Takeda; Hiroyuki Tomiyama; Kenji Nakashima; Kazuko Hasegawa; Fumiya Obata; Takeo Yoshikawa; Hideshi Kawakami; Saburo Sakoda; Mitsutoshi Yamamoto; Nobutaka Hattori; Miho Murata; Yusuke Nakamura; Tatsushi Toda

To identify susceptibility variants for Parkinsons disease (PD), we performed a genome-wide association study (GWAS) and two replication studies in a total of 2,011 cases and 18,381 controls from Japan. We identified a new susceptibility locus on 1q32 (P = 1.52 × 10−12) and designated this as PARK16, and we also identified BST1 on 4p15 as a second new risk locus (P = 3.94 × 10−9). We also detected strong associations at SNCA on 4q22 (P = 7.35 × 10−17) and LRRK2 on 12q12 (P = 2.72 × 10−8), both of which are implicated in autosomal dominant forms of parkinsonism. By comparing results of a GWAS performed on individuals of European ancestry, we identified PARK16, SNCA and LRRK2 as shared risk loci for PD and BST1 and MAPT as loci showing population differences. Our results identify two new PD susceptibility loci, show involvement of autosomal dominant parkinsonism loci in typical PD and suggest that population differences contribute to genetic heterogeneity in PD.


The Journal of Neuroscience | 2005

DNA Methylation Status of SOX10 Correlates with Its Downregulation and Oligodendrocyte Dysfunction in Schizophrenia

Kazuya Iwamoto; Miki Bundo; Kazuo Yamada; Hitomi Takao; Yoshimi Iwayama-Shigeno; Takeo Yoshikawa; Tadafumi Kato

Downregulation of oligodendrocyte-related genes, referred to as oligodendrocyte dysfunction, in schizophrenia has been revealed by DNA microarray studies. Because oligodendrocyte-specific transcription factors regulate the differentiation of oligodendrocytes, genes encoding them are prime candidates for oligodendrocyte dysfunction in schizophrenia. We found that the cytosine-guanine dinucleotide (CpG) island of sex-determining region Y-box containing gene 10 (SOX10), an oligodendrocyte-specific transcription factor, tended to be highly methylated in brains of patients with schizophrenia, correlated with reduced expression of SOX10. We also found that DNA methylation status of SOX10 also was associated with other oligodendrocyte gene expressions in schizophrenia. This may be specific to SOX10, because the CpG island of OLIG2, which encodes another oligodendrocyte-specific transcription factor, was rarely methylated in brains, and the methylation status of myelin-associated oligodendrocytic basic protein, which encodes structural protein in oligodendrocytes, did not account for their expressions or other oligodendrocyte gene expressions. Therefore, DNA methylation status of the SOX10 CpG island could be an epigenetic sign of oligodendrocyte dysfunction in schizophrenia.


Neuron | 2014

Increased L1 Retrotransposition in the Neuronal Genome in Schizophrenia

Miki Bundo; Manabu Toyoshima; Yohei Okada; Wado Akamatsu; Junko Ueda; Taeko Nemoto-Miyauchi; Fumiko Sunaga; Michihiro Toritsuka; Daisuke Ikawa; Akiyoshi Kakita; Motoichiro Kato; Kiyoto Kasai; Toshifumi Kishimoto; Hiroyuki Nawa; Hideyuki Okano; Takeo Yoshikawa; Tadafumi Kato; Kazuya Iwamoto

Recent studies indicate that long interspersed nuclear element-1 (L1) are mobilized in the genome of human neural progenitor cells and enhanced in Rett syndrome and ataxia telangiectasia. However, whether aberrant L1 retrotransposition occurs in mental disorders is unknown. Here, we report high L1 copy number in schizophrenia. Increased L1 was demonstrated in neurons from prefrontal cortex of patients and in induced pluripotent stem (iPS) cell-derived neurons containing 22q11 deletions. Whole-genome sequencing revealed brain-specific L1 insertion in patients localized preferentially to synapse- and schizophrenia-related genes. To study the mechanism of L1 transposition, we examined perinatal environmental risk factors for schizophrenia in animal models and observed an increased L1 copy number after immune activation by poly-I:C or epidermal growth factor. These findings suggest that hyperactive retrotransposition of L1 in neurons triggered by environmental and/or genetic risk factors may contribute to the susceptibility and pathophysiology of schizophrenia.


Journal of Clinical Investigation | 2007

Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients

Tetsushi Sadakata; Miwa Washida; Yoshimi Iwayama; Satoshi Shoji; Yumi Sato; Takeshi Ohkura; Ritsuko Katoh-Semba; Mizuho Nakajima; Yukiko Sekine; Mika Tanaka; Kazuhiko Nakamura; Yasuhide Iwata; Kenji J. Tsuchiya; Norio Mori; Sevilla D. Detera-Wadleigh; Hironobu Ichikawa; Shigeyoshi Itohara; Takeo Yoshikawa; Teiichi Furuichi

Autism, characterized by profound impairment in social interactions and communicative skills, is the most common neurodevelopmental disorder, and its underlying molecular mechanisms remain unknown. Ca(2+)-dependent activator protein for secretion 2 (CADPS2; also known as CAPS2) mediates the exocytosis of dense-core vesicles, and the human CADPS2 is located within the autism susceptibility locus 1 on chromosome 7q. Here we show that Cadps2-knockout mice not only have impaired brain-derived neurotrophic factor release but also show autistic-like cellular and behavioral phenotypes. Moreover, we found an aberrant alternatively spliced CADPS2 mRNA that lacks exon 3 in some autistic patients. Exon 3 was shown to encode the dynactin 1-binding domain and affect axonal CADPS2 protein distribution. Our results suggest that a disturbance in CADPS2-mediated neurotrophin release contributes to autism susceptibility.


Neuroscience Research | 2010

Two genetic variants of CD38 in subjects with autism spectrum disorder and controls.

Toshio Munesue; Shigeru Yokoyama; Kazuhiko Nakamura; Ayyappan Anitha; Kazuo Yamada; Kenshi Hayashi; Tomoya Asaka; Hong-Xiang Liu; Duo Jin; Keita Koizumi; Mohammad Saharul Islam; Jian Jun Huang; Wen Jie Ma; Uh Hyun Kim; Sun Jun Kim; Keunwan Park; Dongsup Kim; Mitsuru Kikuchi; Yasuki Ono; Hideo Nakatani; Shiro Suda; Taishi Miyachi; Hirokazu Hirai; Alla B. Salmina; Yu A. Pichugina; Andrei A. Soumarokov; Nori Takei; Norio Mori; Masatsugu Tsujii; Toshiro Sugiyama

The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p<0.040) and rs3796863 (p<0.005) showed significant associations with a subset of ASD (IQ>70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD.


PLOS Biology | 2007

Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype.

Akiko Watanabe; Tomoko Toyota; Yuji Owada; Takeshi Hayashi; Yoshimi Iwayama; Miho Matsumata; Yuichi Ishitsuka; Akihiro Nakaya; Motoko Maekawa; Tetsuo Ohnishi; Ryoichi Arai; Katsuyasu Sakurai; Kazuo Yamada; Hisatake Kondo; Kenji Hashimoto; Noriko Osumi; Takeo Yoshikawa

Deficits in prepulse inhibition (PPI) are a biological marker for schizophrenia. To unravel the mechanisms that control PPI, we performed quantitative trait loci (QTL) analysis on 1,010 F2 mice derived by crossing C57BL/6 (B6) animals that show high PPI with C3H/He (C3) animals that show low PPI. We detected six major loci for PPI, six for the acoustic startle response, and four for latency to response peak, some of which were sex-dependent. A promising candidate on the Chromosome 10-QTL was Fabp7 (fatty acid binding protein 7, brain), a gene with functional links to the N-methyl-D-aspartic acid (NMDA) receptor and expression in astrocytes. Fabp7-deficient mice showed decreased PPI and a shortened startle response latency, typical of the QTLs proposed effects. A quantitative complementation test supported Fabp7 as a potential PPI-QTL gene, particularly in male mice. Disruption of Fabp7 attenuated neurogenesis in vivo. Human FABP7 showed altered expression in schizophrenic brains and genetic association with schizophrenia, which were both evident in males when samples were divided by sex. These results suggest that FABP7 plays a novel and crucial role, linking the NMDA, neurodevelopmental, and glial theories of schizophrenia pathology and the PPI endophenotype, with larger or overt effects in males. We also discuss the results from the perspective of fetal programming.


Oncogene | 2006

Genome-wide profiling of promoter methylation in human.

Izuho Hatada; Masayuki Fukasawa; Mika Kimura; Sumiyo Morita; Kazuo Yamada; Takeo Yoshikawa; Sumitaka Yamanaka; Chiaki Endo; Akira Sakurada; Masami Sato; Takashi Kondo; Akira Horii; Toshikazu Ushijima; Hiroyuki Sasaki

DNA methylation in the promoter region of a gene is associated with a loss of that genes expression and plays an important role in gene silencing. The inactivation of tumor-suppressor genes by aberrant methylation in the promoter region is well recognized in carcinogenesis. However, there has been little study in this area when it comes to genome-wide profiling of the promoter methylation. Here, we developed a genome-wide profiling method called Microarray-based Integrated Analysis of Methylation by Isoschizomers to analyse the DNA methylation of promoter regions of 8091 human genes. With this method, resistance to both the methylation-sensitive restriction enzyme HpaII and the methylation-insensitive isoschizomer MspI was compared between samples by using a microarray with promoter regions of the 8091 genes. The reliability of the difference in HpaII resistance was judged using the difference in MspI resistance. We demonstrated the utility of this method by finding epigenetic mutations in cancer. Aberrant hypermethylation is known to inactivate tumour suppressor genes. Using this method, we found that frequency of the aberrant promoter hypermethylation in cancer is higher than previously hypothesized. Aberrant hypomethylation is known to induce activation of oncogenes in cancer. Genome-wide analysis of hypomethylated promoter sequences in cancer demonstrated low CG/GC ratio of these sequences, suggesting that CpG-poor genes are sensitive to demethylation activity in cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia

Kazuo Yamada; David J. Gerber; Yoshimi Iwayama; Tetsuo Ohnishi; Hisako Ohba; Tomoko Toyota; Jun Aruga; Yoshio Minabe; Susumu Tonegawa; Takeo Yoshikawa

The calcineurin cascade is central to neuronal signal transduction, and genes in this network are intriguing candidate schizophrenia susceptibility genes. To replicate and extend our previously reported association between the PPP3CC gene, encoding the calcineurin catalytic γ-subunit, and schizophrenia, we examined 84 SNPs from 14 calcineurin-related candidate genes for genetic association by using 124 Japanese schizophrenic pedigrees. Four of these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally significant association with schizophrenia. In a postmortem brain study, EGR1, EGR2, and EGR3 transcripts were shown to be down-regulated in the prefrontal cortex of schizophrenic, but not bipolar, patients. These findings raise a potentially important role for EGR genes in schizophrenia pathogenesis. Because EGR3 is an attractive candidate gene based on its chromosomal location close to PPP3CC within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing the entire EGR3 genomic interval and detected 15 SNPs. One of these, IVS1 + 607A→G SNP, displayed the strongest evidence for disease association, which was confirmed in 1,140 independent case-control samples. An in vitro promoter assay detected a possible expression-regulatory effect of this SNP. These findings support the previous genetic association of altered calcineurin signaling with schizophrenia pathogenesis and identify EGR3 as a compelling susceptibility gene.


Schizophrenia Research | 2008

Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia

Yumiko Ikeda; Noriaki Yahata; Itsuo Ito; Masatoshi Nagano; Tomoko Toyota; Takeo Yoshikawa; Yoshiro Okubo; Hidenori Suzuki

Neurotrophic factors (NFs) play a pivotal role in the development of the central nervous system. They are thus also suspected of being involved in the etiology of schizophrenia. Previous studies reported a decreased level of serum brain-derived neurotrophic factor (BDNF) in schizophrenia, whereas the association of epidermal growth factor (EGF) with this illness remains controversial. Using a two-site enzyme immunoassay, we conducted the simultaneous measurement of serum BDNF and EGF levels in a group of patients with chronic schizophrenia (N=74) and a group of normal controls matched in age, body mass index, smoking habit and sex (N=87). We found that, compared to normal controls, patients with chronic schizophrenia exhibited lower serum levels of both BDNF and EGF across all ages examined (21-59 years). The serum levels of BDNF and EGF were negatively correlated in the controls (r=-0.387, P=0.0002) but not in the patients. Clinical parameters such as duration of illness and psychiatric rating scale also showed no robust correlations with the NF levels. Collectively, these results suggest that pervasive, abnormal signaling of NFs underlies the pathophysiology of chronic schizophrenia.


Biological Psychiatry | 2004

No Association Between the Val66Met Polymorphism of the Brain-Derived Neurotrophic Factor Gene and Bipolar Disorder in a Japanese Population: A Multicenter Study

Hiroshi Kunugi; Yoshimi Iijima; Masahiko Tatsumi; Mariko Yoshida; Ryota Hashimoto; Tadafumi Kato; Kaoru Sakamoto; Takako Fukunaga; Toshiya Inada; Tatsuyo Suzuki; Nakao Iwata; Norio Ozaki; Kazuo Yamada; Takeo Yoshikawa

BACKGROUND Two previous studies reported a significant association between a missense polymorphism (Val66Met) in the brain-derived neurotrophic factor (BDNF) gene and bipolar disorder; however, contradictory negative results have also been reported, necessitating further investigation. METHODS We organized a multicenter study of a relatively large sample of 519 patients with bipolar disorder (according to DSM-IV criteria) and 588 control subjects matched for gender, age, and ethnicity (Japanese). Genotyping was done by polymerase chain reaction-based restriction fragment length polymorphism or direct sequencing. RESULTS The genotype distributions and allele frequencies were similar among the patients and control subjects. Even if the possible relationships of the polymorphism with several clinical variables (i.e., bipolar I or II, presence of psychotic features, family history, and age of onset) were examined, no variable was related to the polymorphism. CONCLUSIONS The Val66Met polymorphism of the BDNF gene is unrelated to the development or clinical features of bipolar disorder, at least in a Japanese population.

Collaboration


Dive into the Takeo Yoshikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Toyota

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Yoshimi Iwayama

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Motoko Maekawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiji Hattori

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuo Ohnishi

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Tadafumi Kato

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge