Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoko Toyota is active.

Publication


Featured researches published by Tomoko Toyota.


PLOS Biology | 2007

Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype.

Akiko Watanabe; Tomoko Toyota; Yuji Owada; Takeshi Hayashi; Yoshimi Iwayama; Miho Matsumata; Yuichi Ishitsuka; Akihiro Nakaya; Motoko Maekawa; Tetsuo Ohnishi; Ryoichi Arai; Katsuyasu Sakurai; Kazuo Yamada; Hisatake Kondo; Kenji Hashimoto; Noriko Osumi; Takeo Yoshikawa

Deficits in prepulse inhibition (PPI) are a biological marker for schizophrenia. To unravel the mechanisms that control PPI, we performed quantitative trait loci (QTL) analysis on 1,010 F2 mice derived by crossing C57BL/6 (B6) animals that show high PPI with C3H/He (C3) animals that show low PPI. We detected six major loci for PPI, six for the acoustic startle response, and four for latency to response peak, some of which were sex-dependent. A promising candidate on the Chromosome 10-QTL was Fabp7 (fatty acid binding protein 7, brain), a gene with functional links to the N-methyl-D-aspartic acid (NMDA) receptor and expression in astrocytes. Fabp7-deficient mice showed decreased PPI and a shortened startle response latency, typical of the QTLs proposed effects. A quantitative complementation test supported Fabp7 as a potential PPI-QTL gene, particularly in male mice. Disruption of Fabp7 attenuated neurogenesis in vivo. Human FABP7 showed altered expression in schizophrenic brains and genetic association with schizophrenia, which were both evident in males when samples were divided by sex. These results suggest that FABP7 plays a novel and crucial role, linking the NMDA, neurodevelopmental, and glial theories of schizophrenia pathology and the PPI endophenotype, with larger or overt effects in males. We also discuss the results from the perspective of fetal programming.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia

Kazuo Yamada; David J. Gerber; Yoshimi Iwayama; Tetsuo Ohnishi; Hisako Ohba; Tomoko Toyota; Jun Aruga; Yoshio Minabe; Susumu Tonegawa; Takeo Yoshikawa

The calcineurin cascade is central to neuronal signal transduction, and genes in this network are intriguing candidate schizophrenia susceptibility genes. To replicate and extend our previously reported association between the PPP3CC gene, encoding the calcineurin catalytic γ-subunit, and schizophrenia, we examined 84 SNPs from 14 calcineurin-related candidate genes for genetic association by using 124 Japanese schizophrenic pedigrees. Four of these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally significant association with schizophrenia. In a postmortem brain study, EGR1, EGR2, and EGR3 transcripts were shown to be down-regulated in the prefrontal cortex of schizophrenic, but not bipolar, patients. These findings raise a potentially important role for EGR genes in schizophrenia pathogenesis. Because EGR3 is an attractive candidate gene based on its chromosomal location close to PPP3CC within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing the entire EGR3 genomic interval and detected 15 SNPs. One of these, IVS1 + 607A→G SNP, displayed the strongest evidence for disease association, which was confirmed in 1,140 independent case-control samples. An in vitro promoter assay detected a possible expression-regulatory effect of this SNP. These findings support the previous genetic association of altered calcineurin signaling with schizophrenia pathogenesis and identify EGR3 as a compelling susceptibility gene.


Schizophrenia Research | 2008

Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia

Yumiko Ikeda; Noriaki Yahata; Itsuo Ito; Masatoshi Nagano; Tomoko Toyota; Takeo Yoshikawa; Yoshiro Okubo; Hidenori Suzuki

Neurotrophic factors (NFs) play a pivotal role in the development of the central nervous system. They are thus also suspected of being involved in the etiology of schizophrenia. Previous studies reported a decreased level of serum brain-derived neurotrophic factor (BDNF) in schizophrenia, whereas the association of epidermal growth factor (EGF) with this illness remains controversial. Using a two-site enzyme immunoassay, we conducted the simultaneous measurement of serum BDNF and EGF levels in a group of patients with chronic schizophrenia (N=74) and a group of normal controls matched in age, body mass index, smoking habit and sex (N=87). We found that, compared to normal controls, patients with chronic schizophrenia exhibited lower serum levels of both BDNF and EGF across all ages examined (21-59 years). The serum levels of BDNF and EGF were negatively correlated in the controls (r=-0.387, P=0.0002) but not in the patients. Clinical parameters such as duration of illness and psychiatric rating scale also showed no robust correlations with the NF levels. Collectively, these results suggest that pervasive, abnormal signaling of NFs underlies the pathophysiology of chronic schizophrenia.


Archives of General Psychiatry | 2010

Enhanced carbonyl stress in a subpopulation of schizophrenia.

Makoto Arai; Hiroko Yuzawa; Tetsuo Ohnishi; Nanako Obata; Yoshimi Iwayama; Seiichi Haga; Tomoko Toyota; Hiroshi Ujike; Mayumi Arai; Tomoe Ichikawa; Atsushi Nishida; Yoko Tanaka; Aizo Furukawa; Yuuzou Aikawa; Osamu Kuroda; Kazuhiro Niizato; Ryosuke Izawa; Kazuhiko Nakamura; Norio Mori; Daisuke Matsuzawa; Kenji Hashimoto; Masaomi Iyo; Ichiro Sora; Masaaki Matsushita; Yuji Okazaki; Takeo Yoshikawa; Toshio Miyata; Masanari Itokawa

CONTEXT Various factors are involved in the pathogenesis of schizophrenia. Accumulation of advanced glycation end products, including pentosidine, results from carbonyl stress, a state featuring an increase in reactive carbonyl compounds (RCOs) and their attendant protein modifications. Vitamin B(6) is known to detoxify RCOs, including advanced glycation end products. Glyoxalase I (GLO1) is one of the enzymes required for the cellular detoxification of RCOs. OBJECTIVES To examine whether plasma levels of pentosidine and serum vitamin B(6) are altered in patients with schizophrenia and to evaluate the functionality of GLO1 variations linked to concomitant carbonyl stress. DESIGN An observational biochemical and genetic analysis study. SETTING Multiple centers in Japan. PARTICIPANTS One hundred six individuals (45 schizophrenic patients and 61 control subjects) were recruited for biochemical measurements. Deep resequencing of GLO1 derived from peripheral blood or postmortem brain tissue was performed in 1761 patients with schizophrenia and 1921 control subjects. MAIN OUTCOME MEASURES Pentosidine and vitamin B(6) concentrations were determined by high-performance liquid chromatographic assay. Protein expression and enzymatic activity were quantified in red blood cells and lymphoblastoid cells using Western blot and spectrophotometric techniques. RESULTS We found that a subpopulation of individuals with schizophrenia exhibit high plasma pentosidine and low serum pyridoxal (vitamin B(6)) levels. We also detected genetic and functional alterations in GLO1. Marked reductions in enzymatic activity were associated with pentosidine accumulation and vitamin B(6) depletion, except in some healthy subjects. Most patients with schizophrenia who carried the genetic defects exhibited high pentosidine and low vitamin B(6) levels in contrast with control subjects with the genetic defects, suggesting the existence of compensatory mechanisms. CONCLUSIONS Our findings suggest that GLO1 deficits and carbonyl stress are linked to the development of a certain subtype of schizophrenia. Elevated plasma pentosidine and concomitant low vitamin B(6) levels could be the most cogent and easily measurable biomarkers in schizophrenia and should be helpful for classifying heterogeneous types of schizophrenia on the basis of their biological causes.


Biological Psychiatry | 2004

Association analysis of FEZ1 variants with schizophrenia in Japanese cohorts

Kazuo Yamada; Kazuhiko Nakamura; Yoshio Minabe; Yoshimi Iwayama-Shigeno; Hitomi Takao; Tomoko Toyota; Eiji Hattori; Noriyoshi Takei; Yoshimoto Sekine; Katsuaki Suzuki; Yasuhide Iwata; Ko Miyoshi; Akiko Honda; Kousuke Baba; Taiichi Katayama; Masaya Tohyama; Norio Mori; Takeo Yoshikawa

BACKGROUND DISC1 has been suggested as a causative gene for psychoses in a large Scottish family. We recently identified FEZ1 as an interacting partner for DISC1. To investigate the role of FEZ1 in schizophrenia and bipolar disorder, case-control association analyses were conducted in Japanese cohorts. METHODS We performed a mutation screen of the FEZ1 gene and detected 15 polymorphisms. Additional data on informative polymorphisms were obtained from public databases. Eight single nucleotide polymorphisms (SNPs) were analyzed in 119 bipolar disorder and 360 schizophrenic patients and age- and gender-matched control subjects. All genotypes were determined with the TaqMan assay, and selected samples were confirmed by sequencing. RESULTS The two adjacent polymorphisms displayed a nominally significant association with schizophrenia (IVS2+ 1587G>A, p = .014; 396T<A or Asp123Glu, p = .024). Homozygotes with the Glu123 allele were observed in only a small portion (2%) of schizophrenia patients but not in control subjects or bipolar patients. Conversely, no SNPs displayed allelic, genotypic, or haplotypic associations with bipolar disorder. CONCLUSIONS A modest association between FEZ1 and schizophrenia suggests that this gene and the DISC1-mediated molecular pathway might play roles in the development of schizophrenia, with FEZ1 affecting only a small subset of Japanese schizophrenia patients.


American Journal of Medical Genetics | 2009

Preliminary genome-wide association study of bipolar disorder in the Japanese population.

Eiji Hattori; Tomoko Toyota; Yuichi Ishitsuka; Yoshimi Iwayama; Kazuo Yamada; Hiroshi Ujike; Yukitaka Morita; Masafumi Kodama; Kenji Nakata; Yoshio Minabe; Kazuhiko Nakamura; Yasuhide Iwata; Nori Takei; Norio Mori; Hiroshi Naitoh; Yoshio Yamanouchi; Nakao Iwata; Norio Ozaki; Tadafumi Kato; Toru Nishikawa; Atsushi Kashiwa; Mika Suzuki; Kunihiko Shioe; Manabu Shinohara; Masami Hirano; Shinichiro Nanko; Akihisa Akahane; Mikako Ueno; Naoshi Kaneko; Yuichiro Watanabe

Recent progress in genotyping technology and the development of public databases has enabled large‐scale genome‐wide association tests with diseases. We performed a two‐stage genome‐wide association study (GWAS) of bipolar disorder (BD) in Japanese cohorts. First we used Affymetrix 100K GeneChip arrays in the analysis of 107 cases with bipolar I disorder and 107 controls, and selected markers that were nominally significant (P < 0.01) in at least one of the three models (1,577 markers in total). In the follow‐up stage, we analyzed these markers using an Illumina platform (1,526 markers; 51 markers were not designable for the platform) and an independent sample set, which consisted of 395 cases (bipolar I + II) and 409 controls. We also assessed the population stratification of current samples using principal components analysis. After the two‐stage analysis, 89 markers remained nominally significant (allelic P < 0.05) with the same allele being consistently over‐represented in both the first and the follow‐up stages. However, none of these were significant after correction for multiple‐testing by false discovery rates. Sample stratification was virtually negligible. Collectively, this is the first GWAS of BD in the Japanese population. But given the small sample size and the limited genomic coverage, these results should be taken as preliminary.


Biological Psychiatry | 2006

Distinguishable haplotype blocks in the HTR3A and HTR3B region in the Japanese reveal evidence of association of HTR3B with female major depression.

Kazuo Yamada; Eiji Hattori; Yoshimi Iwayama; Tetsuo Ohnishi; Hisako Ohba; Tomoko Toyota; Hitomi Takao; Yoshio Minabe; Noriaki Nakatani; Teruhiko Higuchi; Sevilla D. Detera-Wadleigh; Takeo Yoshikawa

BACKGROUND Genetic variations in the serotonin receptor 3A (HTR3A) and 3B (HTR3B) genes, positioned in tandem on chromosome 11q23.2, have been shown to be associated with psychiatric disorders in samples of European ancestry. But the polymorphisms highlighted in these reports map to different locations in the two genes, therefore it is unclear which gene exerts a stronger effect on susceptibility. METHODS To determine the haplotype block structure in the genomic regions of HTR3A and HTR3B, and to examine whether genetic variations in the region show evidence of association with schizophrenia and affective disorder in the Japanese, we performed haplotype-based case-control analysis using 29 polymorphisms. RESULTS Two haplotype blocks each were revealed for HTR3A and HTR3B in Japanese samples. In HTR3B, haplotype block 2 that included a nonsynonymous single nucleotide polymorphism (SNP), yielded evidence of association with major depression in females (global p = .0023). Analysis employing genome-wide SNPs using the STRUCTURE program did not detect population stratification in the samples. CONCLUSIONS Our results suggest an important role for HTR3B in major depression in women and also raise the possibility that previously proposed disease-associated SNPs in the HTR3A/B region in Caucasians are in linkage disequilibrium with haplotype block 2 of HTR3B in the Japanese.


American Journal of Medical Genetics | 2008

Genetic analyses of Roundabout (ROBO) axon guidance receptors in autism

Ayyappan Anitha; Kazuhiko Nakamura; Kazuo Yamada; Shiro Suda; Ismail Thanseem; Masatsugu Tsujii; Yoshimi Iwayama; Eiji Hattori; Tomoko Toyota; Taishi Miyachi; Yasuhide Iwata; Katsuaki Suzuki; Hideo Matsuzaki; Masayoshi Kawai; Yoshimoto Sekine; Kenji J. Tsuchiya; Genichi Sugihara; Yasuomi Ouchi; Toshiro Sugiyama; Keita Koizumi; Haruhiro Higashida; Nori Takei; Takeo Yoshikawa; Norio Mori

Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (SERT) modulates serotonin levels, and is a major therapeutic target in autism. Factors that regulate SERT expression might be implicated in the pathophysiology of autism. One candidate SERT regulatory protein is the roundabout axon guidance molecule, ROBO. SerT expression in Drosophila is regulated by robo; it plays a vital role in mammalian neurodevelopment also. Here, we examined the associations of ROBO3 and ROBO4 with autism, in a trio association study using DNA from 252 families recruited to AGRE. Four SNPs of ROBO3 (rs3923890, P = 0.023; rs7925879, P = 0.017; rs4606490, P = 0.033; and rs3802905, P = 0.049) and a single SNP of ROBO4 (rs6590109, P = 0.009) showed associations with autism; the A/A genotype of rs3923890 showed lower ADI‐R_A scores, which reflect social interaction. Significant haplotype associations were also observed for ROBO3 and ROBO4. We further compared the mRNA expressions of ROBO1, ROBO2, ROBO3, and ROBO4 in the lymphocytes of 19 drug‐naïve autistic patients and 20 age‐ and sex‐matched controls. Expressions of ROBO1 (P = 0.018) and ROBO2 (P = 0.023) were significantly reduced in the autistic group; the possibility of using the altered expressions of ROBO as peripheral markers for autism, may be explored. In conclusion, we suggest a possible role of ROBO in the pathogenesis of autism. Abnormalities of ROBO may lead to autism either by interfering with serotonergic system, or by disrupting neurodevelopment. To the best of our knowledge, this is the first report relating ROBO with autism.


Biological Psychiatry | 2004

Association of neural cell adhesion molecule 1 gene polymorphisms with bipolar affective disorder in Japanese individuals

Makoto Arai; Masanari Itokawa; Kazuo Yamada; Tomoko Toyota; Mayumi Arai; Seiichi Haga; Hiroshi Ujike; Ichiro Sora; Kazuhiko Ikeda; Takeo Yoshikawa

BACKGROUND Although the pathogenesis of mood disorders remains unclear, heritable factors have been shown to be involved. Neural cell adhesion molecule 1 (NCAM1) is known to play important roles in cell migration, neurite growth, axonal guidance, and synaptic plasticity. Disturbance of these neurodevelopmental processes is proposed as one etiology for mood disorder. We therefore undertook genetic analysis of NCAM1 in mood disorders. METHODS We determined the complete genomic organization of human NCAM1 gene by comparing complementary deoxyribonucleic acid and genomic sequences; mutation screening detected 11 polymorphisms. The genotypic, allelic, and haplotype distributions of these variants were analyzed in unrelated control individuals (n = 357) and patients with bipolar disorder (n = 151) and unipolar disorder (n = 78), all from central Japan. RESULTS Three single nucleotide polymorphisms, IVS6+32T>C, IVS7+11G>C and IVS12+21C>A, displayed significant associations with bipolar disorder (for allelic associations, nominal p =.04, p =.02, and p =.004, respectively, all p >.05 after Bonferroni corrections). Furthermore, the haplotype located in a linkage disequilibrium block was strongly associated with bipolar disorder (the p value of the most significant three-marker haplotype is .005). CONCLUSIONS Our results suggest that genetic variations in NCAM1 or nearby genes could confer risks associated with bipolar affective disorder in Japanese individuals.


Molecular Autism | 2012

Brain region-specific altered expression and association of mitochondria-related genes in autism

Ayyappan Anitha; Kazuhiko Nakamura; Ismail Thanseem; Kazuo Yamada; Yoshimi Iwayama; Tomoko Toyota; Hideo Matsuzaki; Taishi Miyachi; Satoru Yamada; Masatsugu Tsujii; Kenji J. Tsuchiya; Kaori Matsumoto; Yasuhide Iwata; Katsuaki Suzuki; Hironobu Ichikawa; Toshiro Sugiyama; Takeo Yoshikawa; Norio Mori

BackgroundMitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions.MethodsFor gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism.ResultsSeveral genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients.ConclusionsOur study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted.

Collaboration


Dive into the Tomoko Toyota's collaboration.

Top Co-Authors

Avatar

Takeo Yoshikawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Yoshimi Iwayama

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Kazuo Yamada

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiji Hattori

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Motoko Maekawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Tetsuo Ohnishi

RIKEN Brain Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge