Torsten Semmler
Robert Koch Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Torsten Semmler.
Clinical Microbiology and Infection | 2012
Christa Ewers; Astrid Bethe; Torsten Semmler; Sebastian Guenther; Lothar H. Wieler
The possible zoonotic spread of antimicrobial-resistant bacteria is controversial. This review discusses global molecular epidemiological data combining both analyses of the chromosomal background, using multilocus sequence typing (MLST), and analyses of plasmid (episomal) extended-spectrum β-lactamase (ESBL)/AmpC genes in Escherichia coli present in humans and animals. For consideration of major epidemiological differences, animals were separated into livestock and companion animals. MLST revealed the existence of ESBL-producing isolates thoughout the E. coli population, with no obvious association with any ancestral EcoR group. A similar distribution of major ESBL/AmpC types was apparent only in human isolates, regardless of their geographical origin from Europe, Asia, or the Americas, whereas in animals this varied extensively between animal groups and across different geographical areas. In contrast to the diversity of episomal ESBL/AmpC types, isolates from human and animals mainly shared identical sequence types (STs), suggesting transmission or parallel micro-evolution. In conclusion, the opinion that animal ESBL-producing E. coli is a major source of human infections is oversimplified, and neglects a highly complex scenario.
Journal of Antimicrobial Chemotherapy | 2010
Christa Ewers; Mirjam Grobbel; Ivonne Stamm; Peter A. Kopp; Ines Diehl; Torsten Semmler; Angelika Fruth; Janine Beutlich; Beatriz Guerra; Lothar H. Wieler; Sebastian Guenther
OBJECTIVES In view of the intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15 extended-spectrum beta-lactamase (ESBL) in human clinical settings it would be of great interest to explore its existence in animals to unravel a possible reservoir function and the origin and transmission of this group of multiresistant strains. METHODS A total of 177 clinical phenotypically ESBL-producing E. coli isolates, mainly obtained from companion animals with urinary tract infections, wound infections and diarrhoea, were collected in a veterinary diagnostic laboratory covering a European-wide service area. They were screened for molecular subtype O25b and multilocus sequence type 131. O25b-ST131 isolates were subsequently tested for ESBL types, and phenotypic and genotypic resistance determinants. Further characterization of the strains was performed by PFGE and virulence gene typing. RESULTS Ten (5.6%) of 177 phenotypically ESBL-producing E. coli isolates, nine strains from dogs and one strain from a horse, were allocated to the B2-O25b-ST131 lineage. Nine of these isolates harboured a CTX-M-15-type beta-lactamase enzyme while one strain possessed an SHV-12-type ESBL. Macrorestriction analysis revealed a cluster formation of six of the animal CTX-M-15-type ESBL-producing strains from five different European countries together with a human control strain constituting a group of clonally related strains at a similarity value of 87.0%. CONCLUSIONS Our findings demonstrate that the group of clonally related human B2-O25:H4-ST131 CTX-M-15-type ESBL-producing E. coli strains is present in companion animals from various European countries. This highlights the possibility of inter-species transmission of these multiresistant strains from human to animal and vice versa.
Veterinary Microbiology | 2010
Claudia Ruscher; Antina Lübke-Becker; Torsten Semmler; Claus-G. Wleklinski; Angela Paasch; Alexandra Soba; Ivonne Stamm; Peter A. Kopp; Lothar H. Wieler; Birgit Walther
In order to gain a deeper insight into the phylogenetic background and diversity of methicillin-resistant S. pseudintermedius (MRSP) of animal origin, genetic relationships and clonal distribution among 146 European MRSP were examined using different molecular and phenotypical typing approaches. MRSP strains were derived from clinical microbiological specimens (mainly of small animal origin) sent in for diagnostic purposes from various veterinary facilities between 2005 and 2008. Pulsed-field gel electrophoresis (PFGE) of SmaI-macrorestriction fragments allowed differentiation of five PFGE-clusters that were subdivided into further distinct subtypes. Representatives of each PFGE subtype were analyzed by multilocus sequence typing (MLST) for assignment of sequence types (ST). With one exception (ST5), all these MRSP strains belonged to ST71. Furthermore, assessment of spa-typing results revealed that the majority of all strains harboured spa type t02. Further sporadically detected spa types t05 and t06 as well as two new types (t15 and t23), were found to be closely related to t02. According to PCR-based SCCmec-typing, SCCmecIII was the most prevalent type (n=138), and solely one non-typeable variant was identified in several strains (n=8). In addition, all strains were tested positive by PCR for the leukotoxin encoding operon LukI and the Staphylococcus intermedius-exfoliative toxin (SIET), respectively. Our cumulative data indicate a recent emergence of a certain multidrug-resistant MRSP-lineage (ST71) in central and southern European countries during the last few years.
Nature Genetics | 2014
Astrid von Mentzer; Thomas Richard Connor; Lothar H. Wieler; Torsten Semmler; Atsushi Iguchi; Nicholas R. Thomson; David A. Rasko; Enrique Joffré; Jukka Corander; Derek Pickard; Gudrun Wiklund; Ann-Mari Svennerholm; Åsa Sjöling; Gordon Dougan
Enterotoxigenic Escherichia coli (ETEC), a major cause of infectious diarrhea, produce heat-stable and/or heat-labile enterotoxins and at least 25 different colonization factors that target the intestinal mucosa. The genes encoding the enterotoxins and most of the colonization factors are located on plasmids found across diverse E. coli serogroups. Whole-genome sequencing of a representative collection of ETEC isolated between 1980 and 2011 identified globally distributed lineages characterized by distinct colonization factor and enterotoxin profiles. Contrary to current notions, these relatively recently emerged lineages might harbor chromosome and plasmid combinations that optimize fitness and transmissibility. These data have implications for understanding, tracking and possibly preventing ETEC disease.
Journal of Antimicrobial Chemotherapy | 2014
Christa Ewers; Astrid Bethe; Ivonne Stamm; Mirjam Grobbel; Peter A. Kopp; Beatriz Guerra; Michael Stubbe; Yohei Doi; Zhiyong Zong; Axel Kola; Katharina Schaufler; Torsten Semmler; Angelika Fruth; Lothar H. Wieler; Sebastian Guenther
OBJECTIVES To discern the relevance of ST648 extended-spectrum β-lactamase (ESBL)-producing Escherichia coli as a putative new group of multiresistant and extraintestinal pathogenic strains in animals, its frequency, ESBL types, antimicrobial resistance patterns and virulence gene (VG) profiles should be determined and compared with ST131 strains from the same collection of strains. METHODS ESBL-producing E. coli isolates (n = 1152), consecutively sampled from predominantly dogs, cats and horses between 2008 and 2011, were assigned to a phylogenetic group by PCR. Partial multilocus sequence typing was performed for group D and B2 strains and strains presumed to be D-ST648 and B2-ST131 were fully typed. ESBL genes and extraintestinal pathogenic E. coli (ExPEC)-like VGs were characterized by PCR and sequence analysis and antimicrobial resistance was determined by broth dilution. Clonal analysis was done by PFGE. RESULTS Forty (3.5%) ESBL-producing E. coli were determined as D-ST648, whereas B2-ST131 isolates occurred less frequently (2.8%). Although the predominant ESBL type in both groups was CTX-M-15 (72.5% versus 46.9%), ST648 strains from companion animals and horses displayed a lower variety of ESBL types (CTX-M-1, -3, -14, -15 and -61 versus CTX-M-1,-2,-14,-15,-27 and -55 and SHV-12). In contrast to ST131 strains, a higher proportion of ST648 strains showed resistance to most non-β-lactam antibiotics. Overall, VGs were less abundant in ST648 strains, although some strains had VG profiles comparable to those of ST131 strains. ExPEC-associated serotype O1:H6 was predominant (46.8%) among the ST648 strains. Some PFGE clusters comprised ST648 isolates from pets, horses and wild birds and humans included from previous studies. CONCLUSIONS Our findings demonstrate that certain subgroups of E. coli D-ST648-CTX-M may represent a novel genotype that combines multiresistance, extraintestinal virulence and zoonotic potential.
PLOS ONE | 2012
Birgit Walther; Julia Hermes; Christiane Cuny; Lothar H. Wieler; Szilvia Vincze; Yassmin Abou Elnaga; Ivonne Stamm; Peter A. Kopp; Barbara Kohn; Wolfgang Witte; Andreas Jansen; Franz Josef Conraths; Torsten Semmler; Tim Eckmanns; Antina Lübke-Becker
Background Since the relationship between dogs and their owners has changed, and dogs moved from being working dogs to family members in post-industrial countries, we hypothesized that zoonotic transmission of opportunistic pathogens like coagulase positive staphylococci (CPS) is likely between dogs and their owners. Methodology/Principal Findings CPS- nasal carriage, different aspects of human-to-dog relationship as well as potential interspecies transmission risk factors were investigated by offering nasal swabs and a questionnaire to dog owners (108) and their dogs (108) at a dog show in 2009. S. aureus was found in swabs of 20 (18.5%) humans and two dogs (1.8%), and spa types which correspond to well known human S. aureus lineages dominated (e.g. CC45, CC30 and CC22). Multilocus sequence typing (MLST) of the two canine strains revealed ST72 and ST2065 (single locus variant of ST34). Fifteen dogs (13.9%) and six owners (5.6%) harboured S. pseudintermedius, including one mecA-positive human isolate (MRSP). Pulsed field gel electrophoresis (PFGE) revealed that one dog/owner pair harboured indistinguishable S. pseudintermedius- isolates of ST33. Ten (48%) of the 21 S. pseudintermedius-isolates showed resistance towards more than one antimicrobial class. 88.9% of the dog owners reported to allow at least one dog into the house, 68.5% allow the dog(s) to rest on the sofa, 39.8% allow their dogs to come onto the bed, 93.5% let them lick their hands and 52.8% let them lick their face. Bivariate analysis of putative risk factors revealed that dog owners who keep more than two dogs have a significantly higher chance of being colonized with S. pseudintermedius than those who keep 1–2 dogs (p<0.05). Conclusions/Recommendations In conclusion, CPS transmission between dog owners and their dogs is possible. Further investigation regarding interspecies transmission and the diverse adaptive pathways influencing the epidemiology of CPS (including MRSA and MRSP) in different hosts is needed.
PLOS ONE | 2014
Szilvia Vincze; Ivonne Stamm; Peter A. Kopp; Julia Hermes; Cornelia Adlhoch; Torsten Semmler; Lothar H. Wieler; Antina Lübke-Becker; Birgit Walther
Staphylococcus (S.) aureus is an important cause of wound infections in companion animals, and infections with methicillin-resistant S. aureus (MRSA) are of particular concern due to limited treatment options and their zoonotic potential. However, comparable epidemiological data on MRSA infections in dogs, cats and horses is scarce, also limiting the knowledge about possible links to MRSA isolates from human populations. To gain more knowledge about the occurrence and genotypic variation of MRSA among wound swabs of companion animal origin in Germany we performed a survey (2010–2012) including 5,229 samples from 1,170 veterinary practices. S. aureus was identified in 201 (5.8%) canine, 140 (12.2%) feline and 138 (22.8%) equine swabs from a total of 3,479 canine, 1,146 feline and 604 equine wounds, respectively. High MRSA rates were identified with 62.7%, 46.4% and 41.3% in S. aureus of canine, feline and equine origin, respectively. Further genotyping including spa typing and multilocus sequence typing (MLST) revealed a comparable distribution of spa types among canine and feline MRSA with CC22 (47.6%; 49.2%) and CC5 (30.2%; 29.2%) as predominant lineages followed by CC398 (13.5%; 7.7%) and CC8 (4.0%; 9.2%). In contrast, the majority of equine MRSA belonged to CC398 (87.7%). Our data highlight the importance of S. aureus and MRSA as a cause of wound infections, particularly in cats and horses in Germany. While “human-associated” MRSA lineages were most common in dogs and cats, a remarkable number of CC398-MRSA was detected in horses, indicating a replacement of CC8-MRSA as the predominant lineage within horses in Germany. These data enforce further longitudinal epidemiological approaches to examine the diversity and temporal relatedness of MRSA populations in humans and animals to assess probable sources of MRSA infections. This would enable a sound risk assessment and establishment of intervention strategies to limit the additional spread of MRSA.
International Journal of Medical Microbiology | 2013
Carmen Bednorz; Kathrin Oelgeschläger; Bianca Kinnemann; Susanne Hartmann; Konrad Neumann; Robert Pieper; Astrid Bethe; Torsten Semmler; Karsten Tedin; Peter Schierack; Lothar H. Wieler; Sebastian Guenther
Following the Europe-wide ban of antimicrobial growth promoters, feed supplementation with zinc has increased in livestock breeding. In addition to possible beneficial effects on animal health, feed supplementation with heavy metals is known to influence the gut microbiota and might promote the spread of antimicrobial resistance via co-selection or other mechanisms. As Escherichia coli is among the most important pathogens in pig production and often displays multi-resistant phenotypes, we set out to investigate the influence of zinc feed additives on the composition of the E. coli populations in vivo focusing on phylogenetic diversity and antimicrobial resistance. In a piglet feeding trial, E. coli were isolated from ileum and colon digesta of high dose zinc-supplemented (2500ppm) and background dose (50ppm) piglets (control group). The E. coli population was characterized via pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) for the determination of the phylogenetic background. Phenotypic resistance screening via agar disk diffusion and minimum inhibitory concentration testing was followed by detection of resistance genes for selected clones. We observed a higher diversity of E. coli clones in animals supplemented with zinc compared to the background control group. The proportion of multi-resistant E. coli was significantly increased in the zinc group compared to the control group (18.6% vs. 0%). For several subclones present both in the feeding and the control group we detected up to three additional phenotypic and genotypic resistances in the subclones from the zinc feeding group. Characterization of these subclones suggests an increase in antimicrobial resistance due to influences on plasmid uptake by zinc supplementation, questioning the reasonability of zinc feed additives as a result of the ban of antimicrobial growth promoters.
Gut Pathogens | 2010
Andrea Menrath; Lothar H. Wieler; Katrin Heidemanns; Torsten Semmler; Angelika Fruth; Nicole Kemper
BackgroundShiga toxin producing Escherichia coli (STEC) are an important cause of human gastro-enteritis and extraintestinal sequelae, with ruminants, especially cattle, as the major source of infection and reservoir. In this study, the fecal STEC shedding of 133 dairy cows was analyzed over a period of twelve months by monthly sampling with the aim to investigate shedding patterns and risk factors.ResultsOverall, 24.7% (in total 407) of 1,646 fecal samples were tested positive for stx by PCR with inner-herd prevalences on the different farms of 11.1% to 32.3%. At individual levels, cows were stx-positive on zero to eight consecutive samplings. According to a strictly longitudinal definition of Super-Shedding, in the present study 14 cows were identified as Super-Shedders of non-O157 serotypes.Significant risk factors for the shedding of STEC were the month of sampling, the number of lactations and days in lactation, the nutritional condition, the somatic cell count and the content of protein in milk. Most notably, the presence of STEC Super-Shedding cows in the herd was a significant risk factor, revealing that STEC Super-Shedding is not restricted to STEC O157:H7 alone.ConclusionsThese data have implications for possible interventions, as removing single non-O157:H7 STEC Super-Shedding cattle from farms would significantly reduce STEC burden.
Emerging Infectious Diseases | 2012
Birgit Walther; Lothar H. Wieler; Szilvia Vincze; Esther-Maria Antão; Anja G. Brandenburg; Ivonne Stamm; Peter A. Kopp; Barbara Kohn; Torsten Semmler; Antina Lübke-Becker
Methicillin-resistant Staphylocoocus aureus (MRSA) harboring mecALGA251 has been isolated from humans and ruminants. Database screening identified this MRSA variant in cats, dogs, and a guinea pig in Germany during 2008–2011. The novel MRSA variant is not restricted to ruminants or humans, and contact with companion animals might pose a zoonotic risk.