Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xing Meng is active.

Publication


Featured researches published by Xing Meng.


Journal of Biological Chemistry | 2007

Three-Dimensional Localization of Serine 2808, a Phosphorylation Site in Cardiac Ryanodine Receptor

Xing Meng; Bailong Xiao; Shitian Cai; Xiaojun Huang; Fei Li; Jeff Bolstad; Ramon Trujillo; Judith Airey; S. R. Wayne Chen; Terence Wagenknecht; Zheng Liu

Type 2 ryanodine receptor (RyR2) is the major calcium release channel in cardiac muscle. Phosphorylation of RyR2 by cAMP-dependent protein kinase A and by calmodulin-dependent protein kinase II modulates channel activity. Hyperphosphorylation at a single amino acid residue, Ser-2808, has been proposed to directly disrupt the binding of a 12.6-kDa FK506-binding protein (FKBP12.6) to RyR2, causing a RyR2 malfunction that triggers cardiac arrhythmias in human heart failure. To determine the structural basis of the interaction between Ser-2808 and FKBP12.6, we have employed two independent approaches to map this phosphorylation site in RyR2 by three-dimensional cryo-electron microscopy. In one approach, we inserted a green fluorescent protein (GFP) after amino acid Tyr-2801, and mapped the GFP three-dimensional location in the RyR2 structure. In another approach, the binding site of monoclonal antibody 34C was mapped in the three-dimensional structure of skeletal muscle RyR1. The epitope of antibody 34C has been mapped to amino acid residues 2,756 through 2,803 of the RyR1 sequence, corresponding to residues 2,722 through 2,769 of the RyR2 sequence. These locations of GFP insertion and antibody binding are adjacent to one another in domain 6 of the cytoplasmic clamp region. Importantly, the three-dimensional location of the Ser-2808 phosphorylation site is 105-120Å distance from the FKBP12.6 binding site mapped previously, indicating that Ser-2808 is unlikely to be directly involved in the binding of FKBP12.6 to RyR2, as had been proposed previously.


Journal of Molecular Biology | 2009

CLIC2-RyR1 Interaction and Structural Characterization by Cryo-electron Microscopy

Xing Meng; Guoliang Wang; Cedric Viero; Qiongling Wang; Wei Mi; Xiao-Dong Su; Terence Wagenknecht; Alan J. Williams; Zheng Liu; Chang-Cheng Yin

Chloride intracellular channel 2 (CLIC2), a newly discovered small protein distantly related to the glutathione transferase (GST) structural family, is highly expressed in cardiac and skeletal muscle, although its physiological function in these tissues has not been established. In the present study, [3H]ryanodine binding, Ca2+ efflux from skeletal sarcoplasmic reticulum (SR) vesicles, single channel recording, and cryo-electron microscopy were employed to investigate whether CLIC2 can interact with skeletal ryanodine receptor (RyR1) and modulate its channel activity. We found that: (1) CLIC2 facilitated [3H]ryanodine binding to skeletal SR and purified RyR1, by increasing the binding affinity of ryanodine for its receptor without significantly changing the apparent maximal binding capacity; (2) CLIC2 reduced the maximal Ca2+ efflux rate from skeletal SR vesicles; (3) CLIC2 decreased the open probability of RyR1 channel, through increasing the mean closed time of the channel; (4) CLIC2 bound to a region between domains 5 and 6 in the clamp-shaped region of RyR1; (5) and in the same clamp region, domains 9 and 10 became separated after CLIC2 binding, indicating CLIC2 induced a conformational change of RyR1. These data suggest that CLIC2 can interact with RyR1 and modulate its channel activity. We propose that CLIC2 functions as an intrinsic stabilizer of the closed state of RyR channels.


Journal of Structural Biology | 2009

Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

Zonghuan Lu; Tanvir R. Shaikh; David Barnard; Xing Meng; Hisham Mohamed; Aymen S. Yassin; Carmen A. Mannella; Rajendra K. Agrawal; Toh-Ming Lu; Terence Wagenknecht

The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device.


Journal of Biological Chemistry | 2011

Localization of the Dantrolene-binding Sequence near the FK506-binding Protein-binding Site in the Three-dimensional Structure of the Ryanodine Receptor

Ruiwu Wang; Xiaowei Zhong; Xing Meng; Andrea Koop; Xixi Tian; Peter P. Jones; Bradley R. Fruen; Terence Wagenknecht; Zheng Liu; S. R. Wayne Chen

Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590–609 in skeletal ryanodine receptor (RyR1) and residues 601–620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.


Biochemical Journal | 2008

Localization of PKA phosphorylation site, Ser 2030 , in the three-dimensional structure of cardiac ryanodine receptor

Peter P. Jones; Xing Meng; Bailong Xiao; Shitian Cai; Jeff Bolstad; Terence Wagenknecht; Zheng Liu; S. R. Wayne Chen

PKA (protein kinase A)-dependent phosphorylation of the cardiac Ca2+-release channel/RyR2 (type 2 ryanodine receptor)is believed to directly dissociate FKBP12.6 (12.6 kDa FK506-binding protein) from the channel, causing abnormal channel activation and Ca2+ release. To gain insight into the structural basis of the regulation of RyR2 by PKA, we determined the three-dimensional location of the PKA site Ser2030. GFP (green fluorescent protein) was inserted into RyR2-wt (wild-type RyR2)and RyR2 mutant, A4860G, after Thr2023. The resultant GFP-RyR2 fusion proteins, RyR2T2023-GFP and RyR2(A4860G)T2023-GFP, were expressed in HEK-293 (human embryonic kidney) cells and functionally characterized. Ca2+-release assays revealed that both GFP-RyR2 fusion proteins formed caffeine- and ryanodine-sensitive Ca2+-release channels. Further analyses using[3H]ryanodine binding demonstrated that the insertion of GFPinto RyR2-wt after Thr2023 reduced the sensitivity of the channelto activation by Ca2+ or caffeine. RyR2(A4860G)T2023-GFP was found to be structurally more stable than RyR2T2023-GFP and was subsequently used as a basis for three-dimensional reconstruction. Cryo-electronmicroscopy and single particle image processing of the purified RyR2(A4860G)T2023-GFP protein revealed the location of the inserted GFP, and hence the Ser2030 PKA site in domain 4,a region that may be involved in signal transduction between the transmembrane and cytoplasmic domains. Like the Ser2808 PKA site reported previously, the Ser2030 site is not located close to the FKBP12.6-binding site mapped previously, indicating that neither of these PKA sites is directly involved in FKBP12.6 binding. On the basis of the three-dimensional localizations of a number of residues or regions, a model for the subunit organization in the structure of RyR2 is proposed.


Biophysical Journal | 2008

Structural and Functional Characterization of Ryanodine Receptor-Natrin Toxin Interaction

Qiang Zhou; Qiongling Wang; Xing Meng; Yuyan Shu; Tao Jiang; Terence Wagenknecht; Chang-Cheng Yin; Sen-Fang Sui; Zheng Liu

Cysteine-rich secretory proteins (CRISPs) are widely distributed, and notably occur in the mammalian reproductive tract and in the salivary glands of venomous reptiles. Most CRISPs can inhibit ion channels, such as the cyclic nucleotide-gated ion channel, potassium channel, and calcium channel. Natrin is a CRISP that has been purified from snake venom. Its targets include the calcium-activated potassium channel, the voltage-gated potassium channel, and the calcium release channel/ryanodine receptor (RyR). Immunoprecipitation experiments showed that natrin binds specifically to type 1 RyR (RyR1) from skeletal muscle. Natrin was found to inhibit both the binding of ryanodine to RyR1, and the calcium-channel activity of RyR1. Cryo-electron microscopy and single-particle image reconstruction analysis revealed that natrin binds to the clamp domains of RyR1. Docking of the crystal structure of natrin into our cryo-electron microscopy density map of the RyR1 + natrin complex suggests that natrin inhibits RyR1 by stabilizing a domain-domain interaction, and that the cysteine-rich domain of natrin is crucial for binding. These findings help reveal how natrin toxin inhibits the RyR calcium release channel, and they allow us to posit a generalized mechanism that governs the interaction between CRISPs and ion channels.


Journal of Structural Biology | 2009

Implementation of a flash-photolysis system for time-resolved cryo-electron microscopy.

Tanvir R. Shaikh; David Barnard; Xing Meng; Terence Wagenknecht

We describe here the implementation of a flash-photolysis system for time-resolved cryo-electron microscopy. A previously designed computer-controlled cryo-plunging apparatus [White, H.D., Thirumurugan, K., Walker, M.L., Trinick, J., 2003. A second generation apparatus for time-resolved electron cryo-microscopy using stepper motors and electrospray. J. Struct. Biol. 144, 246-252] was used as a hardware platform, onto which a xenon flash lamp and liquid light pipe were mounted. The irradiation initiates a reaction through cleavage of the photolabile blocking group from a biologically active compound. The timespan between flashing and freezing in cryogen is on the order of milliseconds, and defines the fastest observable reaction. Blotting of excess fluid, which takes on the order of 1s, is done before irradiation and thus does not represent a rate-limiting step. A specimen-heating problem, identified by measurements with a thermocouple, was alleviated with the use of thick, aluminum-coated grids.


Structure | 2012

Conformational Dynamics inside Amino-Terminal Disease Hotspot of Ryanodine Receptor

Xiaowei Zhong; Ying Liu; Li Zhu; Xing Meng; Ruiwu Wang; Filip Van Petegem; Terence Wagenknecht; S. R. Wayne Chen; Zheng Liu

The N-terminal region of both skeletal and cardiac ryanodine receptor is a disease mutation hotspot. Recently, a crystal structure of the RyR1 fragment (residues 1-559) was solved. This N-terminal structure contains three separate domains, A, B, and C, and was docked into a central vestibule in a full-length RyR1 cryo-EM map. Here, we reconstructed three-dimensional cryo-EM structures of two GFP-tagged RyR2s with GFP inserted after residue Glu-310 and Ser-437, respectively. The structures of RyR2E310-GFP and RyR2S437-GFP displayed an extra mass on domain B and C, directly validating the predicted docking model. Next, we revealed domain movements in molecular dynamics flexible fitting models in both the closed and open state cryo-EM maps. To further probe the conformational changes, we generated FRET pairs by inserting CFP or YFP in two selected domains, FRET studies of three dual-insertion pairs and three co-expressed single-insertion pairs showed the dynamic structural changes within the N-terminal domains.


Journal of Structural Biology | 2013

Methods for testing Zernike phase plates and a report on silicon-based phase plates with reduced charging and improved ageing characteristics

Michael Marko; Xing Meng; Chyongere Hsieh; James Roussie; Christopher Striemer

Imaging with Zernike phase plates is increasingly being used in cryo-TEM tomography and cryo-EM single-particle applications. However, rapid ageing of the phase plates, together with the cost and effort in producing them, present serious obstacles to widespread adoption. We are experimenting with phase plates based on silicon chips that have thin windows; such phase plates could be mass-produced and made available at moderate cost. The windows are coated with conductive layers to reduce charging, and this considerably extends the useful life of the phase plates compared to traditional pure-carbon phase plates. However, a compromise must be reached between robustness and transmission through the phase-plate film. Details are given on testing phase-plate performance by means of imaging an amorphous thin film and evaluating the power spectra of the images.


Journal of Micromechanics and Microengineering | 2014

Gas-Assisted Annular Microsprayer for Sample Preparation for Time-Resolved Cryo-Electron Microscopy

Zonghuan Lu; David Barnard; Tanvir R. Shaikh; Xing Meng; Carmen A. Mannella; Aymen S. Yassin; Rajendra K. Agrawal; Terence Wagenknecht; Toh-Ming Lu

Time-resolved cryo electron microscopy (TRCEM) has emerged as a powerful technique for transient structural characterization of isolated biomacromolecular complexes in their native state within the time scale of seconds to milliseconds. For TRCEM sample preparation, microfluidic device [9] has been demonstrated to be a promising approach to facilitate TRCEM biological sample preparation. It is capable of achieving rapidly aqueous sample mixing, controlled reaction incubation, and sample deposition on electron microscopy (EM) grids for rapid freezing. One of the critical challenges is to transfer samples to cryo-EM grids from the microfluidic device. By using microspraying method, the generated droplet size needs to be controlled to facilitate the thin ice film formation on the grid surface for efficient data collection, while not too thin to be dried out before freezing, i.e., optimized mean droplet size needs to be achieved. In this work, we developed a novel monolithic three dimensional (3D) annular gas-assisted microfluidic sprayer using 3D MEMS (MicroElectroMechanical System) fabrication techniques. The microsprayer demonstrated dense and consistent microsprays with average droplet size between 6-9 μm, which fulfilled the above droplet size requirement for TRCEM sample preparation. With droplet density of around 12-18 per grid window (window size is 58×58 μm), and the data collectible thin ice region of >50% total wetted area, we collected ~800-1000 high quality CCD micrographs in a 6-8 hour period of continuous effort. This level of output is comparable to what were routinely achieved using cryo-grids prepared by conventional blotting and manual data collection. In this case, weeks of data collection process with the previous device [9] has shortened to a day or two. And hundreds of microliter of valuable sample consumption can be reduced to only a small fraction.

Collaboration


Dive into the Xing Meng's collaboration.

Top Co-Authors

Avatar

Terence Wagenknecht

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Zheng Liu

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

David Barnard

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Tanvir R. Shaikh

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajendra K. Agrawal

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Toh-Ming Lu

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Zonghuan Lu

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge