Featured Researches

Information Theory

Distributed Storage Allocations for Optimal Service Rates

Redundant storage maintains the performance of distributed systems under various forms of uncertainty. This paper considers the uncertainty in node access and download service. We consider two access models under two download service models. In one access model, a user can access each node with a fixed probability, and in the other, a user can access a random fixed-size subset of nodes. We consider two download service models. In the first (small file) model, the randomness associated with the file size is negligible. In the second (large file) model, randomness is associated with both the file size and the system's operations. We focus on the service rate of the system. For a fixed redundancy level, the systems' service rate is determined by the allocation of coded chunks over the storage nodes. We consider quasi-uniform allocations, where coded content is uniformly spread among a subset of nodes. The question we address asks what the size of this subset (spreading) should be. We show that in the small file model, concentrating the coded content to a minimum-size subset is universally optimal. For the large file model, the optimal spreading depends on the system parameters. These conclusions hold for both access models.

Read more
Information Theory

Distributed storage algorithms with optimal tradeoffs

One of the primary objectives of a distributed storage system is to reliably store large amounts of source data for long durations using a large number N of unreliable storage nodes, each with c bits of storage capacity. Storage nodes fail randomly over time and are replaced with nodes of equal capacity initialized to zeroes, and thus bits are erased at some rate e . To maintain recoverability of the source data, a repairer continually reads data over a network from nodes at an average rate r , and generates and writes data to nodes based on the read data. The distributed storage source capacity is the maximum amount of source that can be reliably stored for long periods of time. Previous research shows that asymptotically the distributed storage source capacity is at most (1??e 2?�r )?�N?�c as N and r grow. In this work we introduce and analyze algorithms such that asymptotically the distributed storage source data capacity is at least the above equation. Thus, the above equation expresses a fundamental trade-off between network traffic and storage overhead to reliably store source data.

Read more
Information Theory

DoA-LF: A Location Fingerprint Positioning Algorithm with Millimeter-Wave

Location fingerprint (LF) has been widely applied in indoor positioning. However, the existing studies on LF mostly focus on the fingerprint of WiFi below 6 GHz, bluetooth, ultra wideband (UWB), etc. The LF with millimeter-wave (mmWave) was rarely addressed. Since mmWave has the characteristics of narrow beam, fast signal attenuation and wide bandwidth, etc., the positioning error can be reduced. In this paper, an LF positioning method with mmWave is proposed, which is named as DoA-LF. Besides received signal strength indicator (RSSI) of access points (APs), the fingerprint database contains direction of arrival (DoA) information of APs, which is obtained via DoA estimation. Then the impact of the number of APs, the interval of reference points (RPs), the channel model of mmWave and the error of DoA estimation algorithm on positioning error is analyzed with Cramer-Rao lower bound (CRLB). Finally, the proposed DoA-LF algorithm with mmWave is verified through simulations. The simulation results have proved that mmWave can reduce the positioning error due to the fact that mmWave has larger path loss exponent and smaller variance of shadow fading compared with low frequency signals. Besides, accurate DoA estimation can reduce the positioning error.

Read more
Information Theory

Double-IRS Aided MIMO Communication under LoS Channels: Capacity Maximization and Scaling

Intelligent reflecting surface (IRS) is a promising technology to extend the wireless signal coverage and support the high performance communication. By intelligently adjusting the reflection coefficients of a large number of passive reflecting elements, the IRS can modify the wireless propagation environment in favour of signal transmission. Different from most of the prior works which did not consider any cooperation between IRSs, in this work we propose and study a cooperative double-IRS aided multiple-input multiple-output (MIMO) communication system under the line-of-sight (LoS) propagation channels. We investigate the capacity maximization problem by jointly optimizing the transmit covariance matrix and the passive beamforming matrices of the two cooperative IRSs. Although the above problem is non-convex and difficult to solve, we transform and simplify the original problem by exploiting a tractable characterization of the LoS channels. Then we develop a novel low-complexity algorithm whose complexity is independent of the number of IRS elements. Moreover, we analyze the capacity scaling orders of the double-IRS aided MIMO system with respect to an asymptotically large number of IRS elements or transmit power, which significantly outperform those of the conventional single-IRS aided MIMO system, thanks to the cooperative passive beamforming gain brought by the double-reflection link and the spatial multiplexing gain harvested from the two single-reflection links. Extensive numerical results are provided to show that by exploiting the LoS channel properties, our proposed algorithm can achieve a desirable performance with low computational time. Also, our capacity scaling analysis is validated, and the double-IRS system is shown to achieve a much higher rate than its single-IRS counterpart as long as the number of IRS elements or the transmit power is not small.

Read more
Information Theory

Downlink Channel Reconstruction for Spatial Multiplexing in Massive MIMO Systems

To get channel state information (CSI) at a base station (BS), most of researches on massive multiple-input multiple-output (MIMO) systems consider time division duplexing (TDD) to get benefit from the uplink and downlink channel reciprocity. Even in TDD, however, the BS still needs to transmit downlink training signals, which are referred to as channel state information reference signals (CSI-RSs) in the 3GPP standard, to support spatial multiplexing in practice. This is because there are many cases that the number of transmit antennas is less than the number of receive antennas at a user equipment (UE) due to power consumption and circuit complexity issues. Because of this mismatch, uplink sounding reference signals (SRSs) from the UE are not enough for the BS to obtain full downlink MIMO CSI. Therefore, after receiving the downlink CSI-RSs, the UE needs to feed back quantized CSI to the BS using a pre-defined codebook to support spatial multiplexing. In this paper, possible approaches to reconstruct full downlink MIMO CSI at the BS are proposed by exploiting both the SRS and quantized downlink CSI considering practical antenna structures with reduced downlink CSI-RS overhead. Numerical results show that the spectral efficiencies by spatial multiplexing based on the proposed downlink MIMO CSI reconstruction techniques outperform the conventional methods solely based on the quantized CSI.

Read more
Information Theory

Downlink SCMA Codebook Design with Low Error Rate by Maximizing Minimum Euclidean Distance of Superimposed Codewords

Sparse code multiple access (SCMA), as a codebook-based non-orthogonal multiple access (NOMA) technique, has received research attention in recent years. The codebook design problem for SCMA has also been studied to some extent since codebook choices are highly related to the system's error rate performance. In this paper, we approach the SCMA codebook design problem by formulating an optimization problem to maximize the minimum Euclidean distance (MED) of superimposed codewords under power constraints. While SCMA codebooks with a larger MED are expected to obtain a better BER performance, no optimal SCMA codebook in terms of MED maximization, to the authors' best knowledge, has been reported in the SCMA literature yet. In this paper, a new iterative algorithm based on alternating maximization with exact penalty is proposed for the MED maximization problem. The proposed algorithm, when supplied with appropriate initial points and parameters, achieves a set of codebooks of all users whose MED is larger than any previously reported results. A Lagrange dual problem is derived which provides an upper bound of MED of any set of codebooks. Even though there is still a nonzero gap between the achieved MED and the upper bound given by the dual problem, simulation results demonstrate clear advantages in error rate performances of the proposed set of codebooks over all existing ones not only in AWGN channels but also in some downlink scenarios that fit in 5G/NR applications, making it a good codebook candidate thereof. The proposed set of SCMA codebooks, however, are not shown to outperform existing ones in uplink channels or in the case where non-consecutive OFDMA subcarriers are used. The correctness and accuracy of error curves in the simulation results are further confirmed by the coincidences with the theoretical upper bounds of error rates derived for any given set of codebooks.

Read more
Information Theory

Download Cost of Private Updating

We consider the problem of privately updating a message out of K messages from N replicated and non-colluding databases. In this problem, a user has an outdated version of the message W ^ θ of length L bits that differ from the current version W θ in at most f bits. The user needs to retrieve W θ correctly using a private information retrieval (PIR) scheme with the least number of downloads without leaking any information about the message index θ to any individual database. To that end, we propose a novel achievable scheme based on \emph{syndrome decoding}. Specifically, the user downloads the syndrome corresponding to W θ , according to a linear block code with carefully designed parameters, using the optimal PIR scheme for messages with a length constraint. We derive lower and upper bounds for the optimal download cost that match if the term log 2 ( ??f i=0 ( L i )) is an integer. Our results imply that there is a significant reduction in the download cost if f< L 2 compared with downloading W θ directly using classical PIR approaches without taking the correlation between W θ and W ^ θ into consideration.

Read more
Information Theory

Dual MINE-based Neural Secure Communications under Gaussian Wiretap Channel

Recently, some researches are devoted to the topic of end-to-end learning a physical layer secure communication system based on autoencoder under Gaussian wiretap channel. However, in those works, the reliability and security of the encoder model were learned through necessary decoding outputs of not only legitimate receiver but also the eavesdropper. In fact, the assumption of known eavesdropper's decoder or its output is not practical. To address this issue, in this paper we propose a dual mutual information neural estimation (MINE) based neural secure communications model. The security constraints of this method is constructed only with the input and output signal samples of the legal and eavesdropper channels and benefit that training the encoder is completely independent of the decoder. Moreover, since the design of secure coding does not rely on the eavesdropper's decoding results, the security performance would not be affected by the eavesdropper's decoding means. Numerical results show that the performance of our model is guaranteed whether the eavesdropper learns the decoder himself or uses the legal decoder.

Read more
Information Theory

Edge Federated Learning Via Unit-Modulus Over-The-Air Computation (Extended Version)

Edge federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications. This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning, which simultaneously uploads local model parameters and updates global model parameters via analog beamforming. The proposed framework avoids sophisticated baseband signal processing, leading to low communication delays and implementation costs. A training loss bound of UM-AirComp is derived and two low-complexity algorithms, termed penalty alternating minimization (PAM) and accelerated gradient projection (AGP), are proposed to minimize the nonconvex nonsmooth loss bound. Simulation results show that the proposed UM-AirComp framework with PAM algorithm not only achieves a smaller mean square error of model parameters' estimation, training loss, and testing error, but also requires a significantly shorter runtime than that of other benchmark schemes. Moreover, the proposed UM-AirComp framework with AGP algorithm achieves satisfactory performance while reduces the computational complexity by orders of magnitude compared with existing optimization algorithms. Finally, we demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform. It is found that autonomous driving tasks are more sensitive to model parameter errors than other tasks since the former neural networks are more sophisticated containing sparser model parameters.

Read more
Information Theory

Effective Energy Efficiency of Ultra-reliable Low Latency Communication

Effective Capacity defines the maximum communication rate subject to a specific delay constraint, while effective energy efficiency (EEE) indicates the ratio between effective capacity and power consumption. We analyze the EEE of ultra-reliable networks operating in the finite blocklength regime. We obtain a closed form approximation for the EEE in quasi-static Nakagami- m (and Rayleigh as sub-case) fading channels as a function of power, error probability, and latency. Furthermore, we characterize the QoS constrained EEE maximization problem for different power consumption models, which shows a significant difference between finite and infinite blocklength coding with respect to EEE and optimal power allocation strategy. As asserted in the literature, achieving ultra-reliability using one transmission consumes huge amount of power, which is not applicable for energy limited IoT devices. In this context, accounting for empty buffer probability in machine type communication (MTC) and extending the maximum delay tolerance jointly enhances the EEE and allows for adaptive retransmission of faulty packets. Our analysis reveals that obtaining the optimum error probability for each transmission by minimizing the non-empty buffer probability approaches EEE optimality, while being analytically tractable via Dinkelbach's algorithm. Furthermore, the results illustrate the power saving and the significant EEE gain attained by applying adaptive retransmission protocols, while sacrificing a limited increase in latency.

Read more

Ready to get started?

Join us today