Featured Researches

Information Theory

Efficient Decoding of Gabidulin Codes over Galois Rings

This paper presents the first decoding algorithm for Gabidulin codes over Galois rings with provable quadratic complexity. The new method consists of two steps: (1) solving a syndrome-based key equation to obtain the annihilator polynomial of the error and therefore the column space of the error, (2) solving a key equation based on the received word in order to reconstruct the error vector. This two-step approach became necessary since standard solutions as the Euclidean algorithm do not properly work over rings.

Read more
Information Theory

Efficient Numerical Methods for Secrecy Capacity of Gaussian MIMO Wiretap Channel

This paper presents two different low-complexity methods for obtaining the secrecy capacity of multiple-input multiple-output (MIMO) wiretap channel subject to a sum power constraint (SPC). The challenges in deriving computationally efficient solutions to the secrecy capacity problem are due to the fact that the secrecy rate is a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for \emph{the degraded case}. In the first method, we capitalize on the accelerated DC algorithm, which requires solving a sequence of convex subproblems. In particular, we show that each subproblem indeed admits a water-filling solution. In the second method, based on the equivalent convex-concave reformulation of the secrecy capacity problem, we develop a so-called partial best response algorithm (PBRA). Each iteration of the PBRA is also done in closed form. Simulation results are provided to demonstrate the superior performance of the proposed methods.

Read more
Information Theory

End-to-End Mutual Coupling Aware Communication Model for Reconfigurable Intelligent Surfaces: An Electromagnetic-Compliant Approach Based on Mutual Impedances

Reconfigurable intelligent surfaces (RISs) are an emerging technology for application to wireless networks. We introduce a physics and electromagnetic (EM) compliant communication model for analyzing and optimizing RIS-assisted wireless systems. The proposed model has four main notable attributes: (i) it is end-to-end, i.e., it is formulated in terms of an equivalent channel that yields a one-to-one mapping between the voltages fed into the ports of a transmitter and the voltages measured at the ports of a receiver; (ii) it is EM-compliant, i.e., it accounts for the generation and propagation of the EM fields; (iii) it is mutual coupling aware, i.e., it accounts for the mutual coupling among the sub-wavelength unit cells of the RIS; and (iv) it is unit cell aware, i.e., it accounts for the intertwinement between the amplitude and phase response of the unit cells of the RIS.

Read more
Information Theory

Energy Efficiency Maximization in the Uplink Delta-OMA Networks

Delta-orthogonal multiple access (D-OMA) has been recently investigated as a potential technique to enhance the spectral efficiency in the sixth-generation (6G) networks. D-OMA enables partial overlapping of the adjacent sub-channels that are assigned to different clusters of users served by non-orthogonal multiple access (NOMA), at the expense of additional interference. In this paper, we analyze the performance of D-OMA in the uplink and develop a multi-objective optimization framework to maximize the uplink energy efficiency (EE) in a multi-access point (AP) network enabled by D-OMA. Specifically, we optimize the sub-channel and transmit power allocations of the users as well as the overlapping percentage of the spectrum between the adjacent sub-channels. The formulated problem is a mixed binary non-linear programming problem. Therefore, to address the challenge we first transform the problem into a single-objective problem using Tchebycheff method. Then, we apply the monotonic optimization (MO) to explore the hidden monotonicity of the objective function and constraints, and reformulate the problem into a standard MO in canonical form. The reformulated problem is then solved by applying the outer polyblock approximation method. Our numerical results show that D-OMA outperforms the conventional non-orthogonal multiple access (NOMA) and orthogonal frequency division multiple access (OFDMA) when the adjacent sub-channel overlap and scheduling are optimized jointly.

Read more
Information Theory

Energy-Efficient Node Deployment in Static and Mobile Heterogeneous Multi-Hop Wireless Sensor Networks

We study a heterogeneous wireless sensor network (WSN) where N heterogeneous access points (APs) gather data from densely deployed sensors and transmit their sensed information to M heterogeneous fusion centers (FCs) via multi-hop wireless communication. This heterogeneous node deployment problem is modeled as an optimization problem with total wireless communication power consumption of the network as its objective function. We consider both static WSNs, where nodes retain their deployed position, and mobile WSNs where nodes can move from their initial deployment to their optimal locations. Based on the derived necessary conditions for the optimal node deployment in static WSNs, we propose an iterative algorithm to deploy nodes. In addition, we study the necessary conditions of the optimal movement-efficient node deployment in mobile WSNs with constrained movement energy, and present iterative algorithms to find such deployments, accordingly. Simulation results show that our proposed node deployment algorithms outperform the existing methods in the literature, and achieves a lower total wireless communication power in both static and mobile WSNs, on average.

Read more
Information Theory

Energy-Efficient Precoding for Multi-User Visible Light Communication with Confidential Messages

In this paper, an energy-efficient precoding scheme is designed for multi-user visible light communication (VLC) systems in the context of physical layer security, where users' messages are kept mutually confidential. The design problem is shown to be non-convex fractional programming, therefore Dinkelbach algorithm and convex-concave procedure (CCCP) based on the first-order Taylor approximation are utilized to tackle the problem. Numerical results are performed to show the convergence behaviors and the performance of the proposed solution for different parameter settings.

Read more
Information Theory

Energy-Efficient RIS-Assisted Satellites for IoT Networks

The use of satellites to provide ubiquitous coverage and connectivity for densely deployed Internet of Things (IoT) networks is expected to be a reality in emerging 6G networks. Yet the low battery capacity of IoT nodes constitutes a problem for their direct connectivity to satellites, which are located at altitudes of up to 2000 km. In this paper, we propose a novel architecture involving the use of reconfigurable intelligent surface (RIS) units to mitigate the path loss associated with long transmission distances. These RIS units can be placed on satellite reflectarrays, and, when used in broadcasting and beamforming, they can provide significant gains in signal transmission. This study shows that RIS-assisted satellites can provide up to 10^5 times higher downlink and achievable uplink rates for IoT networks.

Read more
Information Theory

Enhanced Normalized Conjugate Beamforming for Cell-Free Massive MIMO

In cell-free massive multiple-input multiple-output (MIMO) the fluctuations of the channel gain from the access points to a user are large due to the distributed topology of the system. Because of these fluctuations, data decoding schemes that treat the channel as deterministic perform inefficiently. A way to reduce the channel fluctuations is to design a precoding scheme that equalizes the effective channel gain seen by the users. Conjugate beamforming (CB) poorly contributes to harden the effective channel at the users. In this work, we propose a variant of CB dubbed enhanced normalized CB (ECB), in that the precoding vector consists of the conjugate of the channel estimate normalized by its squared norm. For this scheme, we derive an exact closed-form expression for an achievable downlink spectral efficiency (SE), accounting for channel estimation errors, pilot reuse and user's lack of channel state information (CSI), assuming independent Rayleigh fading channels. We also devise an optimal max-min fairness power allocation based only on large-scale fading quantities. ECB greatly boosts the channel hardening enabling the users to reliably decode data relying only on statistical CSI. As the provided effective channel is nearly deterministic, acquiring CSI at the users does not yield a significant gain.

Read more
Information Theory

Entropy under disintegrations

We consider the differential entropy of probability measures absolutely continuous with respect to a given ? -finite reference measure on an arbitrary measurable space. We state the asymptotic equipartition property in this general case; the result is part of the folklore but our presentation is to some extent novel. Then we study a general framework under which such entropies satisfy a chain rule: disintegrations of measures. We give an asymptotic interpretation for conditional entropies in this case. Finally, we apply our result to Haar measures in canonical relation.

Read more
Information Theory

Estimating Conditional Mutual Information for Discrete-Continuous Mixtures using Multi-Dimensional Adaptive Histograms

Estimating conditional mutual information (CMI) is an essential yet challenging step in many machine learning and data mining tasks. Estimating CMI from data that contains both discrete and continuous variables, or even discrete-continuous mixture variables, is a particularly hard problem. In this paper, we show that CMI for such mixture variables, defined based on the Radon-Nikodym derivate, can be written as a sum of entropies, just like CMI for purely discrete or continuous data. Further, we show that CMI can be consistently estimated for discrete-continuous mixture variables by learning an adaptive histogram model. In practice, we estimate such a model by iteratively discretizing the continuous data points in the mixture variables. To evaluate the performance of our estimator, we benchmark it against state-of-the-art CMI estimators as well as evaluate it in a causal discovery setting.

Read more

Ready to get started?

Join us today