Featured Researches

Image And Video Processing

Dermo-DOCTOR: A framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders

Automated skin lesion analysis for simultaneous detection and recognition is still challenging for inter-class homogeneity and intra-class heterogeneity, leading to low generic capability of a Single Convolutional Neural Network (CNN) with limited datasets. This article proposes an end-to-end deep CNN-based framework for simultaneous detection and recognition of the skin lesions, named Dermo-DOCTOR, consisting of two encoders. The feature maps from two encoders are fused channel-wise, called Fused Feature Map (FFM). The FFM is utilized for decoding in the detection sub-network, concatenating each stage of two encoders' outputs with corresponding decoder layers to retrieve the lost spatial information due to pooling in the encoders. For the recognition sub-network, the outputs of three fully connected layers, utilizing feature maps of two encoders and FFM, are aggregated to obtain a final lesion class. We train and evaluate the proposed Dermo-Doctor utilizing two publicly available benchmark datasets, such as ISIC-2016 and ISIC-2017. The achieved segmentation results exhibit mean intersection over unions of 85.0 % and 80.0 % respectively for ISIC-2016 and ISIC-2017 test datasets. The proposed Dermo-DOCTOR also demonstrates praiseworthy success in lesion recognition, providing the areas under the receiver operating characteristic curves of 0.98 and 0.91 respectively for those two datasets. The experimental results show that the proposed Dermo-DOCTOR outperforms the alternative methods mentioned in the literature, designed for skin lesion detection and recognition. As the Dermo-DOCTOR provides better-results on two different test datasets, even with limited training data, it can be an auspicious computer-aided assistive tool for dermatologists.

Read more
Image And Video Processing

Despeckling Sentinel-1 GRD images by deep learning and application to narrow river segmentation

This paper presents a despeckling method for Sentinel-1 GRD images based on the recently proposed framework "SAR2SAR": a self-supervised training strategy. Training the deep neural network on collections of Sentinel 1 GRD images leads to a despeckling algorithm that is robust to space-variant spatial correlations of speckle. Despeckled images improve the detection of structures like narrow rivers. We apply a detector based on exogenous information and a linear features detector and show that rivers are better segmented when the processing chain is applied to images pre-processed by our despeckling neural network.

Read more
Image And Video Processing

Detail reconstruction in binary ghost imaging by using point-by-point method

We propose a new local-binary ghost imaging by using point-by-point method. This method can compensate the degradation of imaging quality due to the loss of information during binarization process. The numerical and experimental results show that the target details can be reconstructed well by this method when compared with traditional ghost imaging. By comparing the differences of the speckle patterns from different binarization methods, we also give the corresponding explanation. Our results may have the potential applications in areas with high requirements for imaging details, such as target recognition.

Read more
Image And Video Processing

Detection and severity classification of COVID-19 in CT images using deep learning

Since the breakout of coronavirus disease (COVID-19), the computer-aided diagnosis has become a necessity to prevent the spread of the virus. Detecting COVID-19 at an early stage is essential to reduce the mortality risk of the patients. In this study, a cascaded system is proposed to segment the lung, detect, localize, and quantify COVID-19 infections from computed tomography (CT) images Furthermore, the system classifies the severity of COVID-19 as mild, moderate, severe, or critical based on the percentage of infected lungs. An extensive set of experiments were performed using state-of-the-art deep Encoder-Decoder Convolutional Neural Networks (ED-CNNs), UNet, and Feature Pyramid Network (FPN), with different backbone (encoder) structures using the variants of DenseNet and ResNet. The conducted experiments showed the best performance for lung region segmentation with Dice Similarity Coefficient (DSC) of 97.19% and Intersection over Union (IoU) of 95.10% using U-Net model with the DenseNet 161 encoder. Furthermore, the proposed system achieved an elegant performance for COVID-19 infection segmentation with a DSC of 94.13% and IoU of 91.85% using the FPN model with the DenseNet201 encoder. The achieved performance is significantly superior to previous methods for COVID-19 lesion localization. Besides, the proposed system can reliably localize infection of various shapes and sizes, especially small infection regions, which are rarely considered in recent studies. Moreover, the proposed system achieved high COVID-19 detection performance with 99.64% sensitivity and 98.72% specificity. Finally, the system was able to discriminate between different severity levels of COVID-19 infection over a dataset of 1,110 subjects with sensitivity values of 98.3%, 71.2%, 77.8%, and 100% for mild, moderate, severe, and critical infections, respectively.

Read more
Image And Video Processing

Device for ECG prediction based on retinal vasculature analysis

Pulsatile changes in retinal vascular geometry over the cardiac cycle have clinical implications for the diagnosis of ocular and systemic vascular diseases, including ischemia, coronary heart diseases, and diabetes mellitus and its complications. Thus, analysis of the pulsatile changes over the cardiac cycle is a potential non-invasive assessment for the presence of ocular and systemic vascular diseases. The cardiac rhythm influences these pulsatile changes in the retina, is a result of the change in blood volumetric flow entering the ophthalmic-vascular system under a certain level of intraocular pressure during the peak systolic and diastolic phases of the cardiac cycle. Assessment of fundus images generally requires ophthalmologic expertise. However, the availability of an expert is not always guaranteed, and even if an expert is available, the assessment is performed manually. Thus, there is also a need for an automated device that can analyze the fundus images and keep track of the pulsations. Such a device can be synchronized with the Electrocardiogram and can be programmed to assess the presence of various ocular and systemic vascular diseases. In this project, we proposed and worked on a portable embedded system device that automatically captures retinal images and analyzes them for the estimation of vessel diameters. The device is hand-held and attaches to the ophthalmoscope as an extension. Using the device, the time variation of the vessel diameters can be estimated, which can further be used to predict ECG and the presence of various other systemic vascular diseases.

Read more
Image And Video Processing

Disentanglement for audio-visual emotion recognition using multitask setup

Deep learning models trained on audio-visual data have been successfully used to achieve state-of-the-art performance for emotion recognition. In particular, models trained with multitask learning have shown additional performance improvements. However, such multitask models entangle information between the tasks, encoding the mutual dependencies present in label distributions in the real world data used for training. This work explores the disentanglement of multimodal signal representations for the primary task of emotion recognition and a secondary person identification task. In particular, we developed a multitask framework to extract low-dimensional embeddings that aim to capture emotion specific information, while containing minimal information related to person identity. We evaluate three different techniques for disentanglement and report results of up to 13% disentanglement while maintaining emotion recognition performance.

Read more
Image And Video Processing

Distributed optimization with tunable learned priors for robust ptycho-tomography

Joint ptycho-tomography is a powerful computational imaging framework to recover the refractive properties of a 3D object while relaxing the requirements for probe overlap that is common in conventional phase retrieval. We use an augmented Lagrangian scheme for formulating the constrained optimization problem and employ an alternating direction method of multipliers (ADMM) for the joint solution. ADMM allows the problem to be split into smaller and computationally more manageable subproblems: ptychographic phase retrieval, tomographic reconstruction, and regularization of the solution. We extend our ADMM framework with plug-and-play (PnP) denoisers by replacing the regularization subproblem with a general denoising operator based on machine learning. While the PnP framework enables integrating such learned priors as denoising operators, tuning of the denoiser prior remains challenging. To overcome this challenge, we propose a tuning parameter to control the effect of the denoiser and to accelerate the solution. In our simulations, we demonstrate that our proposed framework with parameter tuning and learned priors generates high-quality reconstructions under limited and noisy measurement data.

Read more
Image And Video Processing

Dual-Teacher++: Exploiting Intra-domain and Inter-domain Knowledge with Reliable Transfer for Cardiac Segmentation

Annotation scarcity is a long-standing problem in medical image analysis area. To efficiently leverage limited annotations, abundant unlabeled data are additionally exploited in semi-supervised learning, while well-established cross-modality data are investigated in domain adaptation. In this paper, we aim to explore the feasibility of concurrently leveraging both unlabeled data and cross-modality data for annotation-efficient cardiac segmentation. To this end, we propose a cutting-edge semi-supervised domain adaptation framework, namely Dual-Teacher++. Besides directly learning from limited labeled target domain data (e.g., CT) via a student model adopted by previous literature, we design novel dual teacher models, including an inter-domain teacher model to explore cross-modality priors from source domain (e.g., MR) and an intra-domain teacher model to investigate the knowledge beneath unlabeled target domain. In this way, the dual teacher models would transfer acquired inter- and intra-domain knowledge to the student model for further integration and exploitation. Moreover, to encourage reliable dual-domain knowledge transfer, we enhance the inter-domain knowledge transfer on the samples with higher similarity to target domain after appearance alignment, and also strengthen intra-domain knowledge transfer of unlabeled target data with higher prediction confidence. In this way, the student model can obtain reliable dual-domain knowledge and yield improved performance on target domain data. We extensively evaluated the feasibility of our method on the MM-WHS 2017 challenge dataset. The experiments have demonstrated the superiority of our framework over other semi-supervised learning and domain adaptation methods. Moreover, our performance gains could be yielded in bidirections,i.e., adapting from MR to CT, and from CT to MR.

Read more
Image And Video Processing

Dual-cycle Constrained Bijective VAE-GAN For Tagged-to-Cine Magnetic Resonance Image Synthesis

Tagged magnetic resonance imaging (MRI) is a widely used imaging technique for measuring tissue deformation in moving organs. Due to tagged MRI's intrinsic low anatomical resolution, another matching set of cine MRI with higher resolution is sometimes acquired in the same scanning session to facilitate tissue segmentation, thus adding extra time and cost. To mitigate this, in this work, we propose a novel dual-cycle constrained bijective VAE-GAN approach to carry out tagged-to-cine MR image synthesis. Our method is based on a variational autoencoder backbone with cycle reconstruction constrained adversarial training to yield accurate and realistic cine MR images given tagged MR images. Our framework has been trained, validated, and tested using 1,768, 416, and 1,560 subject-independent paired slices of tagged and cine MRI from twenty healthy subjects, respectively, demonstrating superior performance over the comparison methods. Our method can potentially be used to reduce the extra acquisition time and cost, while maintaining the same workflow for further motion analyses.

Read more
Image And Video Processing

Dynamic imaging using a deep generative SToRM (Gen-SToRM) model

We introduce a generative smoothness regularization on manifolds (SToRM) model for the recovery of dynamic image data from highly undersampled measurements. The model assumes that the images in the dataset are non-linear mappings of low-dimensional latent vectors. We use the deep convolutional neural network (CNN) to represent the non-linear transformation. The parameters of the generator as well as the low-dimensional latent vectors are jointly estimated only from the undersampled measurements. This approach is different from traditional CNN approaches that require extensive fully sampled training data. We penalize the norm of the gradients of the non-linear mapping to constrain the manifold to be smooth, while temporal gradients of the latent vectors are penalized to obtain a smoothly varying time-series. The proposed scheme brings in the spatial regularization provided by the convolutional network. The main benefit of the proposed scheme is the improvement in image quality and the orders-of-magnitude reduction in memory demand compared to traditional manifold models. To minimize the computational complexity of the algorithm, we introduce an efficient progressive training-in-time approach and an approximate cost function. These approaches speed up the image reconstructions and offers better reconstruction performance.

Read more

Ready to get started?

Join us today