Featured Researches

Atomic And Molecular Clusters

Electrostatic deflection of a molecular beam of massive neutral particles: Fully field-oriented polar molecules within superfluid nanodroplets

Electric deflection measurements on liquid helium nanodroplets doped with individual polar molecules demonstrate that the cold superfluid matrix enables full orientation of the molecular dipole along the external field. This translates into a deflection force which is increased enormously by comparison with typical deflection experiments, and it becomes possible to measurably deflect neutral doped droplets with masses of tens to hundreds of thousands of Daltons. This approach permits preparation and study of continuous fluxes of fully oriented polar molecules and is broadly and generally applicable, including to complex and biological molecules. It is shown that the dipole moments of internally cryogenically cold molecules can be directly determined from a deflection measurement on the doped nanodroplet beam.

Read more
Atomic And Molecular Clusters

Elusive structure of helium trimers

Over the years many He-He interaction potentials have been developed, some very sophisticated, including various corrections beyond Born-Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the potentials. We use diffusion Monte Carlo simulations at T=0 K , which give within statistical noise exact results of the ground state properties. All models predict both trimers 4 He 3 and 4 He 2 3 He to be in a quantum halo state.

Read more
Atomic And Molecular Clusters

Embedding Human Heuristics in Machine-Learning-Enabled Probe Microscopy

Scanning probe microscopists generally do not rely on complete images to assess the quality of data acquired during a scan. Instead, assessments of the state of the tip apex, which not only determines the resolution in any scanning probe technique but can also generate a wide array of frustrating artefacts, are carried out in real time on the basis of a few lines of an image (and, typically, their associated line profiles.) The very small number of machine learning approaches to probe microscopy published to date, however, involve classifications based on full images. Given that data acquisition is the most time-consuming task during routine tip conditioning, automated methods are thus currently extremely slow in comparison to the tried-and-trusted strategies and heuristics used routinely by probe microscopists. Here, we explore various strategies by which different STM image classes (arising from changes in the tip state) can be correctly identified from partial scans. By employing a secondary temporal network and a rolling window of a small group of individual scanlines, we find that tip assessment is possible with a small fraction of a complete image. We achieve this with little-to-no performance penalty -- or, indeed, markedly improved performance in some cases -- and introduce a protocol to detect the state of the tip apex in real time.

Read more
Atomic And Molecular Clusters

Emerging disciplines based on superatoms: a perspective point of view

In this work, our statements are based on the progress of current research on superatomic clusters. Combining the new trend of materials and device manufacture at the atomic level, we analyzed the opportunities for the development based on the use of superatomic clusters as units of functional materials, and presented a foresight of this new branch of science with relevant studies on superatoms.

Read more
Atomic And Molecular Clusters

Endohedrally confined hydrogen atom with a moving nucleus

We studied the hydrogen atom as a system of two quantum particles in different confinement conditions; a spherical-impenetrable-wall cavity and a fullerene molecule cage. The motion is referred to the center of spherical cavities, and the Schrödinger equation solved by means of a Generalized Sturmian Function expansion in spherical coordinates. The solutions present different properties from the ones described by the many models in the literature, where the proton is fixed in space and only the electron is considered as a quantum particle. Our results show that the position of the proton (i.e. the center of mas of the H atom) is very sensitive to the confinement condition, and could vary substantially from one state to another, from being sharply centered to being localized outside the fullerene molecule. Interchange of the localization characteristics between the states when varying the strength of the fullerene cage and mass occurred through crossing phenomena.

Read more
Atomic And Molecular Clusters

Energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 12 <= Z <= 20

We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 12 <= Z <= 20. The GRASP (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code DARC is used. Oscillator strengths, radiative rates, and line strengths are reported for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are reported over a wide temperature range up to 10 7.4 K. Additionally, lifetimes are also listed for all calculated levels of the above ions. Finally, extensive comparisons are made with available results in the literature, as well as with our parallel calculations for all parameters with the Flexible Atomic Code FAC in order to assess the accuracy of the reported results.

Read more
Atomic And Molecular Clusters

Energy levels, radiative rates, and lifetimes for transitions in W LVIII

Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package ({\sc grasp}) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code ({\sc fac}), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼ 98 Ryd), which mainly belong to the 3s 2 3p 5 , 3s3p 6 , 3s 2 3p 4 3d, 3s 2 3p 3 3d 2 , 3s3p 4 3d 2 , 3s 2 3p 2 3d 3 , and 3p 6 3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

Read more
Atomic And Molecular Clusters

Enhanced dissociation of H2+ into highly excited states via laser-induced sequential resonant excitation

We study the dissociation of H 2 + in uv laser pulses by solving the non-Born-Oppenheimer time-dependent Schrödinger equation as a function of the photon energy ω of the pulse. Significant enhancements of the dissociation into highly excited electronic states are observed at critical ω . This is found to be attributed to a sequential resonant excitation mechanism where the population is firstly transferred to the first excited state by absorbing one photon and sequentially to higher states by absorbing another one or more photons at the same internuclear distance. We have substantiated the underlying dynamics by separately calculating the nuclear kinetic energy spectra for individual dissociation pathways through different electronic states.

Read more
Atomic And Molecular Clusters

Evidence of several dipolar quasi-invariants in Liquid Crystals

In a closed quantum system of N coupled spins with magnetic quantum number I, there are about (2I + 1)^N constants of motion. However, the possibility of observing such quasi-invariant (QI) states in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several QI, in the proton NMR of small spin clusters, besides those already known Zeeman, and dipolar orders (strong and weak). We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks. We observe that the signals can be explained with two dipolar QIs only within a range of short preparation times. At longer times the time-domain signals have an echo-like behaviour. We study their multiple quantum coherence content on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Then we show that the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple QI which we isolate experimentally.

Read more
Atomic And Molecular Clusters

Evolution and ion kinetics of a XUV-induced nanoplasma in ammonia clusters

High-intensity extreme ultraviolet (XUV) pulses from a free-electron laser can be used to create a nanoplasma in clusters. In Ref. [Michiels et al. PCCP, 2020; 22: 7828-7834] we investigated the formation of excited states in an XUV-induced nanoplasma in ammonia clusters. In the present article we expand our previous study with a detailed analysis of the nanoplasma evolution and ion kinetics. We use a time-delayed UV laser as probe to ionize excited states of H and H + 2 in the XUV-induced plasma. Employing covariance mapping techniques, we show that the correlated emission of protons plays an important role in the plasma dynamics. The time-dependent kinetic energy of the ions created by the probe laser is measured, revealing the charge neutralization of the cluster happens on a sub-picosecond timescale. Furthermore, we observe ro-vibrationally excited molecular hydrogen ions H +∗ 2 being ejected from the clusters. We rationalize our data through a qualitative model of a finite-size non-thermal plasma.

Read more

Ready to get started?

Join us today