Featured Researches

Adaptation Noise And Self Organizing Systems

Conditional exponents, entropies and a measure of dynamical self-organization

In dynamical systems composed of interacting parts, conditional exponents, conditional exponent entropies and cylindrical entropies are shown to be well defined ergodic invariants which characterize the dynamical selforganization and statitical independence of the constituent parts. An example of interacting Bernoulli units is used to illustrate the nature of these invariants.

Read more
Adaptation Noise And Self Organizing Systems

Conservation laws in coupled multiplicative random arrays lead to 1/f noise

We consider the dynamic evolution of a coupled array of N multiplicative random variables. The magnitude of each is constrained by a lower bound w_0 and their sum is conserved. Analytical calculation shows that the simplest case, N=2 and w_0=0, exhibits a Lorentzian spectrum which gradually becomes fractal as w_0 increases. Simulation results for larger N reveal fractal spectra for moderate to high values of w_0 and power-law amplitude fluctuations at all values. The results are applied to estimating the fractal exponents for cochlear-nerve-fiber action-potential sequences with remarkable success, using only two parameters.

Read more
Adaptation Noise And Self Organizing Systems

Constructive Complexity and Artificial Reality: An Introduction

Basic problems of complex systems are outlined with an emphasis on irreducibility and dynamic many-to-many correspondences. We discuss the importance of a constructive approach to artificial reality and the significance of an internal observer.

Read more
Adaptation Noise And Self Organizing Systems

Cooperative mechanism of self-regulation in hierarchical living systems

We study the problem of how a ``living'' system complex in structure can respond perfectly to local changes in the environment. Such a system is assumed to consist of a distributed ``living'' medium and a hierarchical ``supplying'' network that provides this medium with ``nutritious'' products. Because of the hierarchical organization each element of the supplying network has to behave in a self-consistent way for the system can adapt to changes in the environment. We propose a cooperative mechanism of self-regulation by which the system as a whole can react perfectly. This mechanism is based on an individual response of each element to the corresponding small piece of the information on the state of the ``living'' medium. The conservation of flux through the supplying network gives rise to a certain processing of information and the self-consistent behavior of the elements, leading to the perfect self-regulation. The corresponding equations governing the ``living'' medium state are obtained.

Read more
Adaptation Noise And Self Organizing Systems

Correlated random walks with a finite memory range

We study a family of correlated one-dimensional random walks with a finite memory range M.These walks are extensions of the Taylor's walk as investigated by Goldstein, which has a memory range equal to one. At each step, with a probability p, the random walker moves either to the right or to the left with equal probabilities, or with a probability q=1-p performs a move, which is a stochastic Boolean function of the M previous steps. We first derive the most general form of this stochastic Boolean function, and study some typical cases which ensure that the average value <R_n> of the walker's location after n steps is zero for all values of n. In each case, using a matrix technique, we provide a general method for constructing the generating function of the probability distribution of R_n; we also establish directly an exact analytic expression for the step-step correlations and the variance <R_n^2> of the walk. From the expression of <R_n^2>, which is not straightforward to derive from the probability distribution, we show that, for n going to infinity, the variance of any of these walks behaves as n, provided p>0. Moreover, in many cases, for a very small fixed value of p, the variance exhibits a crossover phenomenon as n increases from a not too large value. The crossover takes place for values of n around 1/p. This feature may mimic the existence of a non-trivial Hurst exponent, and induce a misleading analysis of numerical data issued from mathematical or natural sciences experiments.

Read more
Adaptation Noise And Self Organizing Systems

Coupled Maps with Growth and Death: An Approach to Cell Differentiation

An extension of coupled maps is given which allows for the growth of the number of elements, and is inspired by the cell differentiation problem. The growth of elements is made possible first by clustering the phases, and then by differentiating roles. The former leads to the time sharing of resources, while the latter leads to the separation of roles for the growth. The mechanism of the differentiation of elements is studied. An extension to a model with several internal phase variables is given, which shows differentiation of internal states. The relevance of interacting dynamics with internal states (``intra-inter" dynamics) to biological problems is discussed with an emphasis on heterogeneity by clustering, macroscopic robustness by partial synchronization and recursivity with the selection of initial conditions and digitalization.

Read more
Adaptation Noise And Self Organizing Systems

Coupled Oscillators with Chemotaxis

A simple coupled oscillator system with chemotaxis is introduced to study morphogenesis of cellular slime molds. The model successfuly explains the migration of pseudoplasmodium which has been experimentally predicted to be lead by cells with higher intrinsic frequencies. Results obtained predict that its velocity attains its maximum value in the interface region between total locking and partial locking and also suggest possible roles played by partial synchrony during multicellular development.

Read more
Adaptation Noise And Self Organizing Systems

Critical Exponent of Species-Size Distribution in Evolution

We analyze the geometry of the species- and genotype-size distribution in evolving and adapting populations of single-stranded self-replicating genomes: here programs in the Avida world. We find that a scale-free distribution (power law) emerges in complex landscapes that achieve a separation of two fundamental time scales: the relaxation time (time for population to return to equilibrium after a perturbation) and the time between mutations that produce fitter genotypes. The latter can be dialed by changing the mutation rate. In the scaling regime, we determine the critical exponent of the distribution of sizes and strengths of avalanches in a system without coevolution, described by first-order phase transitions in single finite niches.

Read more
Adaptation Noise And Self Organizing Systems

Criticality and Punctuated Equilibrium in a Spin System Model of a Financial Market

We describe a financial market model which shows a non-equilibrium phase transition. Near the transition punctuated equilibrium behaviour is seen, with avalanches occuring on all scales. This scaling is described by an exponent very near 1. This system shows intermittent time development with bursts of global synchronization reminiscent of a market rollercoaster.

Read more
Adaptation Noise And Self Organizing Systems

Cumulant Dynamics of a Population under Multiplicative Selection, Mutation and Drift

We revisit the classical population genetics model of a population evolving under multiplicative selection, mutation and drift. The number of beneficial alleles in a multi-locus system can be considered a trait under exponential selection. Equations of motion are derived for the cumulants of the trait distribution in the diffusion limit and under the assumption of linkage equilibrium. Because of the additive nature of cumulants, this reduces to the problem of determining equations of motion for the expected allele distribution cumulants at each locus. The cumulant equations form an infinite dimensional linear system and in an authored appendix Adam Prugel-Bennett provides a closed form expression for these equations. We derive approximate solutions which are shown to describe the dynamics well for a broad range of parameters. In particular, we introduce two approximate analytical solutions: (1) Perturbation theory is used to solve the dynamics for weak selection and arbitrary mutation rate. The resulting expansion for the system's eigenvalues reduces to the known diffusion theory results for the limiting cases with either mutation or selection absent. (2) For low mutation rates we observe a separation of time-scales between the slowest mode and the rest which allows us to develop an approximate analytical solution for the dominant slow mode. The solution is consistent with the perturbation theory result and provides a good approximation for much stronger selection intensities.

Read more

Ready to get started?

Join us today