Featured Researches

Instrumentation And Methods For Astrophysics

Commissioning the HI Observing Mode of the Beamformer for the Cryogenically Cooled Focal L-band Array for the GBT (FLAG)

We present the results of commissioning observations for a new digital beamforming back end for the Focal plane L-band Array for the Robert C. Byrd Green Bank Telescope (FLAG), a cryogenically cooled Phased Array Feed (PAF) with the lowest measured T_sys/eta of any PAF outfitted on a radio telescope to date. We describe the custom software used to apply beamforming weights to the raw element covariances to create research quality spectral line images for the new fine-channel mode, study the stability of the beam weights over time, characterize FLAG's sensitivity over a frequency range of 150 MHz, and compare the measured noise properties and observed distribution of neutral hydrogen emission from several extragalactic and Galactic sources with data obtained with the current single-pixel L-band receiver. These commissioning runs establish FLAG as the preeminent PAF receiver currently available for spectral line observations on the world's major radio telescopes.

Read more
Instrumentation And Methods For Astrophysics

Comparative analysis of sky quality and meteorological variables during the total lunar eclipse on 14-15 April 2014 and their effect on qualitative measurements of the Bortle scale

A total lunar eclipse is plausible to have an influence on the variation of some environmental physical parameters, specifically on the conditions of the sky brightness, humidity and temperature. During the eclipse on 14 th -15 th April 2014, these parameters were measured through a photometer and a weather station. The obtained results allow the comparison, practically, of the optimal conditions for observational astronomy work in the Tatacoa desert and therefore to certify it as suitable perfect place to develop night sky astronomical observations. This investigation determined, to some extent, the suitability of this place to carry out astronomical work and research within the optical range. Thus, the changes recorded during the astronomical phenomenon allowed the classification of the sky based on the Bortle Scale

Read more
Instrumentation And Methods For Astrophysics

Comparison of classical and Bayesian imaging in radio interferometry

CLEAN, the commonly employed imaging algorithm in radio interferometry, suffers from a number of shortcomings: in its basic version it does not have the concept of diffuse flux, and the common practice of convolving the CLEAN components with the CLEAN beam erases the potential for super-resolution; it does not output uncertainty information; it produces images with unphysical negative flux regions; and its results are highly dependent on the so-called weighting scheme as well as on any human choice of CLEAN masks to guiding the imaging. Here, we present the Bayesian imaging algorithm resolve which solves the above problems and naturally leads to super-resolution. We take a VLA observation of Cygnus~A at four different frequencies and image it with single-scale CLEAN, multi-scale CLEAN and resolve. Alongside the sky brightness distribution resolve estimates a baseline-dependent correction function for the noise budget, the Bayesian equivalent of weighting schemes. We report noise correction factors between 0.4 and 429. The enhancements achieved by resolve come at the cost of higher computational effort.

Read more
Instrumentation And Methods For Astrophysics

Comparison of simulated backgrounds with in-orbit observations for HE, ME and LE onboard Insight-HXMT

Insight-HXMT, the first X-ray astronomical satellite in China, aims to reveal new sources in the Galaxy and to study fundamental physics of X-ray binaries from 1\,keV to 250\,keV. It has three collimated telescopes, the High Energy X-ray telescope (HE), the Medium Energy X-ray telescope (ME) and the Low Energy X-ray telescope (LE). Before the launch, in-orbit backgrounds of these three telescopes had been estimated through Geant4 simulation, in order to investigate the instrument performance and the achievement of scientific goals. In this work, these simulated backgrounds are compared with in-orbit observations. Good agreement is shown for all three telescopes. For HE, 1) the deviation of the simulated background rate after two years of operation in space is ∼5% from the observation; 2) the total background spectrum and the relative abundance of the ∼ 67\,keV line show long-term increases both in simulations and observations. For ME, 1) the deviation of simulated background rate is within ∼15% from the observation, and 2) there are no obvious long-term increase features in the background spectra of simulations and observations. For LE, the background level given by simulations is also consistent with observations. The consistencies of these comparisons validate that the Insight-HXMT mass model, i.e. space environment components and models adopted, physics processes selected and detector constructions built, is reasonable. However, the line features at ∼ 7.5\,keV and 8.0\,keV, which are obvious in the observed spectra of LE, are not evident in simulations. This might result from uncertainties in the LE constructions.

Read more
Instrumentation And Methods For Astrophysics

Complete parameter inference for GW150914 using deep learning

The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past five years. As the rate of detections grows with detector sensitivity, this poses a growing computational challenge for data analysis. With this in mind, in this work we apply deep learning techniques to perform fast likelihood-free Bayesian inference for gravitational waves. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows---specifically, a neural spline normalizing flow---which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the prior and detector noise characteristics used for training. By training with the detector noise power spectral density estimated at the time of GW150914, and conditioning on the event strain data, we use the neural network to generate accurate posterior samples consistent with analyses using conventional sampling techniques.

Read more
Instrumentation And Methods For Astrophysics

Complex organic molecules in protoplanetary disks : X-ray photodesorption from methanol-containing ices. Part I -- Pure methanol ices

Astrophysical observations show complex organic molecules (COMs) in the gas phase of protoplanetary disks. X-rays emitted from the central young stellar object (YSO) that irradiate interstellar ices in the disk, followed by the ejection of molecules in the gas phase, are a possible route to explain the abundances observed in the cold regions. This process, known as X-ray photodesorption, needs to be quantified for methanol-containing ices. This paper I focuses on the case of X-ray photodesorption from pure methanol ices. We aim at experimentally measuring X-ray photodesorption yields of methanol and its photo-products from pure CH 3 OH ices, and to shed light on the mechanisms responsible for the desorption process. We irradiated methanol ices at 15 K with X-rays in the 525 - 570 eV range. The release of species in the gas phase was monitored by quadrupole mass spectrometry, and photodesorption yields were derived. Under our experimental conditions, the CH 3 OH X-ray photodesorption yield from pure methanol ice is 10 ?? molecule/photon at 564 eV. Photo-products such as CH 4 , H 2 CO, H 2 O, CO 2 , and CO also desorb at increasing efficiency. X-ray photodesorption of larger COMs, which can be attributed to either ethanol, dimethyl ether, and/or formic acid, is also detected. The physical mechanisms at play are discussed and must likely involve the thermalization of Auger electrons in the ice, thus indicating that its composition plays an important role. Finally, we provide desorption yields applicable to protoplanetary disk environments for astrochemical models. The X-rays are shown to be a potential candidate to explain gas-phase abundances of methanol in disks. However, more relevant desorption yields derived from experiments on mixed ices are mandatory to properly support the role played by X-rays in nonthermal desorption of methanol (see paper II).

Read more
Instrumentation And Methods For Astrophysics

Concept Design of Low Frequency Telescope for CMB B-mode Polarization satellite LiteBIRD

LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B -mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of ??6 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ( 18 ??? 9 ??) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90 ??are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.

Read more
Instrumentation And Methods For Astrophysics

Confirming ALMA Calibration using Planck and ACT Observations

We test the accuracy of ALMA flux density calibration by comparing ALMA flux density measurements of extragalactic sources to measurements made by the Planck mission; Planck is absolutely calibrated to sub-percent precision using the dipole signal induced by the satellite's orbit around the solar system barycenter. Planck observations ended before ALMA began systematic observations, however, and many of the sources are variable, so we employ measurements by the Atacama Cosmology Telescope (ACT) to bridge the two epochs. We compare ACT observations at 93 and ??145 GHz to Planck measurements at 100 and 143 GHz and to ALMA measurements made at 91.5 and 103.5 GHz in Band 3. For both comparisons, flux density measurements were corrected to account for the small differences in frequency using the best available spectral index for each source. We find the ALMA flux density scale (based on observations of Uranus) is consistent with Planck. All methods used to make the comparison are consistent with ALMA flux densities in Band 3 averaging 0.99 times those measured by Planck. One specific test gives ALMA/Planck = 0.996±0.024. We also test the absolute calibration of both ACT at 93 and ??145 GHz and the South Pole Telescope (SPT) at 97.43, 152.9 and 215.8 GHz, again with reference to Planck measurements at 100, 143 and 217 GHz, as well as the internal consistency of measurements of compact sources made by all three instruments.

Read more
Instrumentation And Methods For Astrophysics

Constraining Prebiotic Chemistry Through a Better Understanding of Earth's Earliest Environments

Any search for present or past life beyond Earth should consider the initial processes and related environmental controls that might have led to its start. As on Earth, such an understanding lies well beyond how simple organic molecules become the more complex biomolecules of life, because it must also include the key environmental factors that permitted, modulated, and most critically facilitated the prebiotic pathways to life's emergence. Moreover, we ask how habitability, defined in part by the presence of liquid water, was sustained so that life could persist and evolve to the point of shaping its own environment. Researchers have successfully explored many chapters of Earth's coevolving environments and biosphere spanning the last few billion years through lenses of sophisticated analytical and computational techniques, and the findings have profoundly impacted the search for life beyond Earth. Yet life's very beginnings during the first hundreds of millions of years of our planet's history remain largely unknown--despite decades of research. This report centers on one key point: that the earliest steps on the path to life's emergence on Earth were tied intimately to the evolving chemical and physical conditions of our earliest environments. Yet, a rigorous, interdisciplinary understanding of that relationship has not been explored adequately and once better understood will inform our search for life beyond Earth. In this way, studies of the emergence of life must become a truly interdisciplinary effort, requiring a mix that expands the traditional platform of prebiotic chemistry to include geochemists, atmospheric chemists, geologists and geophysicists, astronomers, mission scientists and engineers, and astrobiologists.

Read more
Instrumentation And Methods For Astrophysics

Correlated Energy Uncertainties in Reaction Rate Calculations

Context. Monte Carlo methods can be used to evaluate the uncertainty of a reaction rate that arises from many uncertain nuclear inputs. However, until now no attempt has been made to find the effect of correlated energy uncertainties in input resonance parameters. Aims. To investigate the impact of correlated energy uncertainties on reaction rates. Methods. Using a combination of numerical and Monte Carlo variation of resonance energies, the effect of correlations are investigated. Five reactions are considered: two fictional, illustrative cases and three reactions whose rates are of current interest. Results. The effect of correlations in resonance energies depends on the specific reaction cross section and temperatures considered. When several resonances contribute equally to a reaction rate, and are located either side of the Gamow peak, correlations between their energies dilute their effect on reaction rate uncertainties. If they are both located above or below the maximum of the Gamow peak, however, correlations between their resonance energies can increase the reaction rate uncertainties. This effect can be hard to predict for complex reactions with wide and narrow resonances contributing to the reaction rate.

Read more

Ready to get started?

Join us today