Featured Researches

Instrumentation And Methods For Astrophysics

Artifact-less Coded Aperture Imaging in the X-ray Band with Multiple Different Random Patterns

The coded aperture imaging technique is a useful method of X-ray imaging in observational astrophysics. However, the presence of imaging noise or so-called artifacts in a decoded image is a drawback of this method. We propose a new coded aperture imaging method using multiple different random patterns for significantly reducing the image artifacts. This aperture mask contains multiple different patterns each of which generates a different artifact distribution in its decoded image. By summing all decoded images of the different patterns, the artifact distributions are cancelled out, and we obtain a remarkably accurate image. We demonstrate this concept with imaging experiments of a monochromatic 16 keV hard X-ray beam at the synchrotron photon facility SPring-8, using the combination of a CMOS image sensor and an aperture mask that has four different random patterns composed of holes with a diameter of 27 um and a separation of 39 um. The entire imaging system is installed in a 25 cm-long compact size, and achieves an angular resolution of < 30'' (full width at half maximum). In addition, we show by Monte Carlo simulation that the artifacts can be reduced more effectively if the number of different patterns increases to 8 or 16.

Read more
Instrumentation And Methods For Astrophysics

Assembled Kinetic Impactor for Deflecting Asteroids via Combining the Spacecraft with the Launch Vehicle Final Stage

Asteroid Impacts pose a major threat to all life on the Earth. Deflecting the asteroid from the impact trajectory is an important way to mitigate the threat. A kinetic impactor remains to be the most feasible method to deflect the asteroid. However, due to the constraint of the launch capability, an impactor with the limited mass can only produce a very limited amount of velocity increment for the asteroid. In order to improve the deflection efficiency of the kinetic impactor strategy, this paper proposed a new concept called the Assembled Kinetic Impactor (AKI), which is combining the spacecraft with the launch vehicle final stage. By making full use of the mass of the launch vehicle final stage, the mass of the impactor will be increased, which will cause the improvement of the deflection efficiency. According to the technical data of Long March 5 (CZ-5) launch vehicle, the missions of deflecting Bennu are designed to demonstrate the power of the AKI concept. Simulation results show that, compared with the Classic Kinetic Impactor (CKI, performs spacecraft-rocket separation), the addition of the mass of the launch vehicle final stage can increase the deflection distance to more than 3 times, and reduce the launch lead-time by at least 15 years. With the requirement of the same deflection distance, the addition of the mass of the launch vehicle final stage can reduce the number of launches to 1/3 of that of the number of CKI launches. The AKI concept makes it possible to defend Bennu-like large asteroids by a no-nuclear technique within 10-year launch lead-time. At the same time, for a single CZ-5, the deflection distance of a 140 m diameter asteroid within 10-year launch lead-time, can be increased from less than 1 Earth radii to more than 1 Earth radii.

Read more
Instrumentation And Methods For Astrophysics

Assessment of Efficiency, Impact Factor, Impact of Probe Mass, Probe Life Expectancy, and Reliability of Mars Missions

Mars is the next frontier after Moon for space explorers to demonstrate the extent of human expedition and technology beyond low-earth orbit. Government space agencies as well as private space sectors are extensively endeavouring for a better space enterprise. Focusing on the inspiration to reach Mars by robotic satellite, we have interpreted some of the significant mission parameters like proportionality of mission attempts, efficiency and reliability of Mars probes, Impact and Impact Factor of mass on mission duration, Time lag between consecutive mission attempts, interpretation of probe life and transitional region employing various mathematical analysis. And we have discussed the importance of these parameters for a prospective mission accomplishment. Our novelty in this paper is we have found a deep relation describing that the probe mass adversely affects the mission duration. Applying this relation, we also interpreted the duration of probe life expectancy for upcoming missions.

Read more
Instrumentation And Methods For Astrophysics

AstroPix: Investigating the Potential of Silicon Pixel Sensors in the Future of Gamma-ray Astrophysics

This paper details preliminary photon measurements with the monolithic silicon detector ATLASPix, a pixel detector built and optimized for the CERN experiment ATLAS. The goal of this paper is to determine the promise of pixelated silicon in future space-based gamma-ray experiments. With this goal in mind, radioactive photon sources were used to determine the energy resolution and detector response of ATLASPix; these are novel measurements for ATLASPix, a detector built for a ground-based particle accelerator. As part of this project a new iteration of monolithic Si pixels, named AstroPix, have been created based on ATLASPix, and the eventual goal is to further optimize AstroPix for gamma-ray detection by constructing a prototype Compton telescope.The energy resolution of both the digital and analog output of ATLASPix is the focus of this paper, as it is a critical metric for Compton telescopes. It was found that with the analog output of the detector, the energyresolution of a single pixel was 7.69 +/- 0.13% at 5.89 keV and 7.27 +/- 1.18% at 30.1 keV, which exceeds the conservative baseline requirements of 10% resolution at 60 keV and is an encouraging start to an optimistic goal of<2% resolution at 60 keV. The digital output of the entire detector consistently yielded energy resolutions that exceeded 100% for different sources. The analog output of the monolithic silicon pixels indicates that thisis a promising technology for future gamma-ray missions, while the analysis of the digital output points to the need for a redesign of future photon-sensitive monolithic silicon pixel detectors.

Read more
Instrumentation And Methods For Astrophysics

AstroVaDEr: Astronomical Variational Deep Embedder for Unsupervised Morphological Classification of Galaxies and Synthetic Image Generation

We present AstroVaDEr, a variational autoencoder designed to perform unsupervised clustering and synthetic image generation using astronomical imaging catalogues. The model is a convolutional neural network that learns to embed images into a low dimensional latent space, and simultaneously optimises a Gaussian Mixture Model (GMM) on the embedded vectors to cluster the training data. By utilising variational inference, we are able to use the learned GMM as a statistical prior on the latent space to facilitate random sampling and generation of synthetic images. We demonstrate AstroVaDEr's capabilities by training it on gray-scaled \textit{gri} images from the Sloan Digital Sky Survey, using a sample of galaxies that are classified by Galaxy Zoo 2. An unsupervised clustering model is found which separates galaxies based on learned morphological features such as axis ratio, surface brightness profile, orientation and the presence of companions. We use the learned mixture model to generate synthetic images of galaxies based on the morphological profiles of the Gaussian components. AstroVaDEr succeeds in producing a morphological classification scheme from unlabelled data, but unexpectedly places high importance on the presence of companion objects---demonstrating the importance of human interpretation. The network is scalable and flexible, allowing for larger datasets to be classified, or different kinds of imaging data. We also demonstrate the generative properties of the model, which allow for realistic synthetic images of galaxies to be sampled from the learned classification scheme. These can be used to create synthetic image catalogs or to perform image processing tasks such as deblending.

Read more
Instrumentation And Methods For Astrophysics

Atmospheric turbulence profiling with multi-aperture scintillation of a Shack-Hartmann sensor

Adaptive optics (AO) systems using tomographic estimation of three-dimensional structure of atmospheric turbulence requires vertical atmospheric turbulence profile, which describes turbulence strength as a function of altitude as a prior information. We propose a novel method to reconstruct the profile by applying Multi Aperture Scintillation Sensor (MASS) method to scintillation data obtained by a Shack-Hartmann wavefront sensor (SH-WFS). Compared to the traditional MASS, which uses atmospheric scintillation within 4 concentric annular apertures, the new method utilizes scintillation in several hundreds of spatial patterns, which are created by combinations of SH-WFS subapertures. Accuracy of the turbulence profile reconstruction is evaluated with Bayesian inference, and it is confirmed that turbulence profile with more than 10 layers can be reconstructed thanks to the large number of constraints. We demonstrate the new method with a SH-WFS attached to the 50 cm telescope at Tohoku university and confirm that general characteristics of atmospheric turbulence profile is reproduced.

Read more
Instrumentation And Methods For Astrophysics

Australian Square Kilometre Array Pathfinder: I. System Description

In this paper we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers 31 square degrees at 800 MHz. As a two-dimensional array of 36x12m antennas, with baselines ranging from 22m to 6km, ASKAP also has excellent snapshot imaging capability and 10 arcsecond resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 MHz and 1800 MHz and is expected to facilitate great advances in our understanding of galaxy formation, cosmology and radio transients while opening new parameter space for discovery of the unknown.

Read more
Instrumentation And Methods For Astrophysics

Automated Extended Aperture Photometry for K2 RR Lyrae stars

Light curves for RR Lyrae stars can be difficult to obtain properly in the K2 mission due to the similarities between the timescales of the observed physical phenomena and the instrumental signals appearing in the data. We developed a new photometric method called Extended Aperture Photometry (EAP), a key element of which is to extend the aperture to an optimal size to compensate for the motion of the telescope and to collect all available flux from the star before applying further corrections. We determined the extended apertures for individual stars by hand so far. Now we managed to automate the pipeline that we intend to use for the nearly four thousand RR Lyrae targets observed in the K2 mission. We present the outline of our pipeline and make some comparisons to other photometric solutions.

Read more
Instrumentation And Methods For Astrophysics

B-BOP, the SPICA Imaging Polarimeter

We present the B-BOP instrument, a polarimetric camera on board the future ESA-JAXA SPICA far-infrared space observatory. B-BOP will allow the study of the magnetic field in various astrophysical environments thanks to its unprecedented ability to measure the linear polarization of the submillimeter light. The maps produced by B-BOP will contain not only information on total power, but also on the degree and the angle of polarization, simultaneously in three spectral bands (70, 200 and 350 microns). The B-BOP detectors are ultra-sensitive silicon bolometers that are intrinsically sensitive to polarization. Their NEP is close to 10E-18 W/sqrt(Hz). We will present the optical and thermal architectures of the instrument, we will detail the bolometer design and we will show the expected performances of the instrument based on preliminary lab work.

Read more
Instrumentation And Methods For Astrophysics

Background for gravitational wave signal at LISA from refractive index of solar wind plasma

A strong indication is presented that the space-based gravitational antennas, in particular the LISA concept introduced in 2017 in response to the ESA call for L3 mission concepts, are going to be sensitive to a strong background signal interfering with the prospected signal of gravitational waves. The false signal is due to variations in the electron number density of the solar wind, causing variations in the refractive index of plasma flowing through interplanetary space. As countermeasures, two solutions are proposed. The first solution is to deploy enough solar wind detectors to the LISA mission to allow for reliable knowledge of the solar wind background. The second solution is to equip the LISA interferometer with a second laser beam with a distinct wavelength to allow cancelling of the background solar wind signal from the interferometric data.

Read more

Ready to get started?

Join us today