Featured Researches

Graphics

Optimally Fast Soft Shadows on Curved Terrain with Dynamic Programming and Maximum Mipmaps

We present a simple, novel method of efficiently rendering ray cast soft shadows on curved terrain by using dynamic programming and maximum mipmaps to rapidly find a global minimum shadow cost in constant runtime complexity. Additionally, we apply a new method of reducing view ray computation times that pre-displaces the terrain mesh to bootstrap ray starting positions. Combining these two methods, our ray casting engine runs in real-time with more than 200% speed up over uniform ray stepping with comparable image quality and without hardware ray tracing acceleration. To add support for accurate planetary ephemerides and interactive features, we integrated the engine into celestia.Sci, a general space simulation software. We demonstrate the ability of our engine to accurately handle a large range of distance scales by using it to generate videos of lunar landing trajectories. The numerical error when compared with real lunar mission imagery is small, demonstrating the accuracy and efficiency of our approach.

Read more
Graphics

Optimized Processing of Localized Collisions in Projective Dynamics

We present a method for the efficient processing of contact and collision in volumetric elastic models simulated using the Projective Dynamics paradigm. Our approach enables interactive simulation of tetrahedral meshes with more than half a million elements, provided that the model satisfies two fundamental properties: the region of the model's surface that is susceptible to collision events needs to be known in advance, and the simulation degrees of freedom associated with that surface region should be limited to a small fraction (e.g. 5\%) of the total simulation nodes. Despite this conscious delineation of scope, our hypotheses hold true for common animation subjects, such as simulated models of the human face and parts of the body. In such scenarios, a partial Cholesky factorization can abstract away the behavior of the collision-safe subset of the face into the Schur Complement matrix with respect to the collision-prone region. We demonstrate how fast and accurate updates of penalty-based collision terms can be incorporated into this representation, and solved with high efficiency on the GPU. We also demonstrate the opportunity to iterate a partial update of the element rotations, akin to a selective application of the local step, specifically on the smaller collision-prone region without explicitly paying the cost associated with the rest of the simulation mesh. We demonstrate efficient and robust interactive simulation in detailed models from animation and medical applications.

Read more
Graphics

Optimizing for Aesthetically Pleasing Quadrotor Camera Motion

In this paper we first contribute a large scale online study (N=400) to better understand aesthetic perception of aerial video. The results indicate that it is paramount to optimize smoothness of trajectories across all keyframes. However, for experts timing control remains an essential tool. Satisfying this dual goal is technically challenging because it requires giving up desirable properties in the optimization formulation. Second, informed by this study we propose a method that optimizes positional and temporal reference fit jointly. This allows to generate globally smooth trajectories, while retaining user control over reference timings. The formulation is posed as a variable, infinite horizon, contour-following algorithm. Finally, a comparative lab study indicates that our optimization scheme outperforms the state-of-the-art in terms of perceived usability and preference of resulting videos. For novices our method produces smoother and better looking results and also experts benefit from generated timings.

Read more
Graphics

Ordinary Facet Angles of a Stroked Path Tessellated by Uniform Tangent Angle Steps Are Bounded by Twice the Step Angle

We explain geometrically why ordinary facet angles of a stroked path tessellated from uniform tangent angle steps are bounded by twice the step angle. This fact means---excluding a small number of extraordinary facet angles straddling offset cusps---our polar stroking method bounds the facet angle size to less than 2θ where θ is the tangent step angle.

Read more
Graphics

Organic Narrative Charts

Storyline visualizations display the interactions of groups and entities and their development over time. Existing approaches have successfully adopted the general layout from hand-drawn illustrations to automatically create similar depictions. Ward Shelley is the author of several diagrammatic paintings that show the timeline of art-related subjects, such as Downtown Body, a history of art scenes. His drawings include many stylistic elements that are not covered by existing storyline visualizations, like links between entities, splits and merges of streams, and tags or labels to describe the individual elements. We present a visualization method that provides a visual mapping for the complex relationships in the data, creates a layout for their display, and adopts a similar styling of elements to imitate the artistic appeal of such illustrations. We compare our results to the original drawings and provide an open-source authoring tool prototype.

Read more
Graphics

Overlap-free Drawing of Generalized Pythagoras Trees for Hierarchy Visualization

Generalized Pythagoras trees were developed for visualizing hierarchical data, producing organic, fractal-like representations. However, the drawback of the original layout algorithm is visual overlap of tree branches. To avoid such overlap, we introduce an adapted drawing algorithm using ellipses instead of circles to recursively place tree nodes representing the subhierarchies. Our technique is demonstrated by resolving overlap in diverse real-world and generated datasets, while comparing the results to the original approach.

Read more
Graphics

P-Cloth: Interactive Complex Cloth Simulation on Multi-GPU Systems using Dynamic Matrix Assembly and Pipelined Implicit Integrators

We present a novel parallel algorithm for cloth simulation that exploits multiple GPUs for fast computation and the handling of very high resolution meshes. To accelerate implicit integration, we describe new parallel algorithms for sparse matrix-vector multiplication (SpMV) and for dynamic matrix assembly on a multi-GPU workstation. Our algorithms use a novel work queue generation scheme for a fat-tree GPU interconnect topology. Furthermore, we present a novel collision handling scheme that uses spatial hashing for discrete and continuous collision detection along with a non-linear impact zone solver. Our parallel schemes can distribute the computation and storage overhead among multiple GPUs and enable us to perform almost interactive simulation on complex cloth meshes, which can hardly be handled on a single GPU due to memory limitations. We have evaluated the performance with two multi-GPU workstations (with 4 and 8 GPUs, respectively) on cloth meshes with 0.5-1.65M triangles. Our approach can reliably handle the collisions and generate vivid wrinkles and folds at 2-5 fps, which is significantly faster than prior cloth simulation systems. We observe almost linear speedups with respect to the number of GPUs.

Read more
Graphics

PAVEL: Decorative Patterns with Packed Volumetric Elements

Many real-world hand-crafted objects are decorated with elements that are packed onto the object's surface and deformed to cover it as much as possible. Examples are artisanal ceramics and metal jewelry. Inspired by these objects, we present a method to enrich surfaces with packed volumetric decorations. Our algorithm works by first determining the locations in which to add the decorative elements and then removing the non-physical overlap between them while preserving the decoration volume. For the placement, we support several strategies depending on the desired overall motif. To remove the overlap, we use an approach based on implicit deformable models creating the qualitative effect of plastic warping while avoiding expensive and hard-to-control physical simulations. Our decorative elements can be used to enhance virtual surfaces, as well as 3D-printed pieces, by assembling the decorations onto real-surfaces to obtain tangible reproductions.

Read more
Graphics

PCEDNet : A Lightweight Neural Network for Fast and Interactive Edge Detection in 3D Point Clouds

In recent years, Convolutional Neural Networks (CNN) have proven to be efficient analysis tools for processing point clouds, e.g., for reconstruction, segmentation and classification. In this paper, we focus on the classification of edges in point clouds, where both edges and their surrounding are described. We propose a new parameterization adding to each point a set of differential information on its surrounding shape reconstructed at different scales. These parameters, stored in a Scale-Space Matrix (SSM), provide a well suited information from which an adequate neural network can learn the description of edges and use it to efficiently detect them in acquired point clouds. After successfully applying a multi-scale CNN on SSMs for the efficient classification of edges and their neighborhood, we propose a new lightweight neural network architecture outperforming the CNN in learning time, processing time and classification capabilities. Our architecture is compact, requires small learning sets, is very fast to train and classifies millions of points in seconds.

Read more
Graphics

PTRM: Perceived Terrain Realism Metrics

Terrains are visually important and commonly used in computer graphics. While many algorithms for their generation exist, it is difficult to assess the realism of a generated terrain. This paper presents a first step in the direction of perceptual evaluation of terrain models. We gathered and categorized several classes of real terrains and we generated synthetic terrains by using methods from computer graphics. We then conducted two large studies ranking the terrains perceptually and showing that the synthetic terrains are perceived as lacking realism as compared to the real ones. Then we provide insight into the features that affect the perceived realism by a quantitative evaluation based on localized geomorphology-based landform features (geomorphons) that categorize terrain structures such as valleys, ridges, hollows, etc. We show that the presence or absence of certain features have a significant perceptual effect. We then introduce Perceived Terrain Realism Metrics (PTRM); a perceptual metrics that estimates perceived realism of a terrain represented as a digital elevation map by relating distribution of terrain features with their perceived realism. We validated PTRM on real and synthetic data and compared it to the perceptual studies. To confirm the importance of the presence of these features, we used a generative deep neural network to transfer them between real terrains and synthetic ones and we performed another perceptual experiment that further confirmed their importance for perceived realism.

Read more

Ready to get started?

Join us today