Featured Researches

Symbolic Computation

A toolbox to solve coupled systems of differential and difference equations

We present algorithms to solve coupled systems of linear differential equations, arising in the calculation of massive Feynman diagrams with local operator insertions at 3-loop order, which do {\it not} request special choices of bases. Here we assume that the desired solution has a power series representation and we seek for the coefficients in closed form. In particular, if the coefficients depend on a small parameter $\ep$ (the dimensional parameter), we assume that the coefficients themselves can be expanded in formal Laurent series w.r.t.\ $\ep$ and we try to compute the first terms in closed form. More precisely, we have a decision algorithm which solves the following problem: if the terms can be represented by an indefinite nested hypergeometric sum expression (covering as special cases the harmonic sums, cyclotomic sums, generalized harmonic sums or nested binomial sums), then we can calculate them. If the algorithm fails, we obtain a proof that the terms cannot be represented by the class of indefinite nested hypergeometric sum expressions. Internally, this problem is reduced by holonomic closure properties to solving a coupled system of linear difference equations. The underlying method in this setting relies on decoupling algorithms, difference ring algorithms and recurrence solving. We demonstrate by a concrete example how this algorithm can be applied with the new Mathematica package \texttt{SolveCoupledSystem} which is based on the packages \texttt{Sigma}, \texttt{HarmonicSums} and \texttt{OreSys}. In all applications the representation in x -space is obtained as an iterated integral representation over general alphabets, generalizing Poincaré iterated integrals.

Read more
Symbolic Computation

A variant of van Hoeij's algorithm to compute hypergeometric term solutions of holonomic recurrence equations

Linear homogeneous recurrence equations with polynomial coefficients are said to be holonomic. Such equations have been introduced in the last century for proving and discovering combinatorial and hypergeometric identities. Given a field K of characteristic zero, a term a(n) is called hypergeometric with respect to K, if the ratio a(n+1)/a(n) is a rational function over K. The solutions space of holonomic recurrence equations gained more interest in the 1990s from the well known Zeilberger's algorithm. In particular, algorithms computing the subspace of hypergeometric term solutions which covers polynomial, rational, and some algebraic solutions of these equations were investigated by Marko Petkovšek (1993) and Mark van Hoeij (1999). The algorithm proposed by the latter is characterized by a much better efficiency than that of the other; it computes, in Gamma representations, a basis of the subspace of hypergeometric term solutions of any given holonomic recurrence equation, and is considered as the current state of the art in this area. Mark van Hoeij implemented his algorithm in the Computer Algebra System (CAS) Maple through the command LREtools[hypergeomsols] . We propose a variant of van Hoeij's algorithm that performs the same efficiency and gives outputs in terms of factorials and shifted factorials, without considering certain recommendations of the original version. We have implementations of our algorithm for the CASs Maxima and Maple. Such an implementation is new for Maxima which is therefore used for general-purpose examples. Our Maxima code is currently available as a third-party package for Maxima. A comparison between van Hoeij's implementation and ours is presented for Maple 2020. It appears that both have the same efficiency, and moreover, for some particular cases, our code finds results where LREtools[hypergeomsols] fails.

Read more
Symbolic Computation

ATENSOR - REDUCE program for tensor simplification

The paper presents a REDUCE program for the simplification of tensor expressions that are considered as formal indexed objects. The proposed algorithm is based on the consideration of tensor expressions as vectors in some linear space. This linear space is formed by all the elements of the group algebra of the corresponding tensor expression. Such approach permits us to simplify the tensor expressions possessing symmetry properties, summation (dummy) indices and multiterm identities by unify manner. The canonical element for the tensor expression is defined in terms of the basic vectors of this linear space. The main restriction of the algorithm is the dimension of the linear space that is equal to N!, where N is a number of indices of the tensor expression. The program uses REDUCE as user interface.

Read more
Symbolic Computation

Accelerated Approximation of the Complex Roots and Factors of a Univariate Polynomial

The algorithms of Pan (1995) and(2002) approximate the roots of a complex univariate polynomial in nearly optimal arithmetic and Boolean time but require precision of computing that exceeds the degree of the polynomial. This causes numerical stability problems when the degree is large. We observe, however, that such a difficulty disappears at the initial stage of the algorithms, and in our present paper we extend this stage to root-finding within a nearly optimal arithmetic and Boolean complexity bounds provided that some mild initial isolation of the roots of the input polynomial has been ensured. Furthermore our algorithm is nearly optimal for the approximation of the roots isolated in a fixed disc, square or another region on the complex plane rather than all complex roots of a polynomial. Moreover the algorithm can be applied to a polynomial given by a black box for its evaluation (even if its coefficients are not known); it promises to be of practical value for polynomial root-finding and factorization, the latter task being of interest on its own right. We also provide a new support for a winding number algorithm, which enables extension of our progress to obtaining mild initial approximations to the roots. We conclude with summarizing our algorithms and their extension to the approximation of isolated multiple roots and root clusters.

Read more
Symbolic Computation

Accelerated Approximation of the Complex Roots of a Univariate Polynomial (Extended Abstract)

Highly efficient and even nearly optimal algorithms have been developed for the classical problem of univariate polynomial root-finding (see, e.g., \cite{P95}, \cite{P02}, \cite{MNP13}, and the bibliography therein), but this is still an area of active research. By combining some powerful techniques developed in this area we devise new nearly optimal algorithms, whose substantial merit is their simplicity, important for the implementation.

Read more
Symbolic Computation

Additive Decompositions in Primitive Extensions

This paper extends the classical Ostrogradsky-Hermite reduction for rational functions to more general functions in primitive extensions of certain types. For an element f in such an extension K , the extended reduction decomposes f as the sum of a derivative in K and another element r such that f has an antiderivative in K if and only if r=0 ; and f has an elementary antiderivative over K if and only if r is a linear combination of logarithmic derivatives over the constants when K is a logarithmic extension. Moreover, r is minimal in some sense. Additive decompositions may lead to reduction-based creative-telescoping methods for nested logarithmic functions, which are not necessarily D -finite.

Read more
Symbolic Computation

Algebraic Diagonals and Walks

The diagonal of a multivariate power series F is the univariate power series Diag(F) generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions related to diagonals in the case where F is the Taylor expansion of a bivariate rational function. It is classical that in this case Diag(F) is an algebraic function. We propose an algorithm that computes an annihilating polynomial for Diag(F). Generically, it is its minimal polynomial and is obtained in time quasi-linear in its size. We show that this minimal polynomial has an exponential size with respect to the degree of the input rational function. We then address the related problem of enumerating directed lattice walks. The insight given by our study leads to a new method for expanding the generating power series of bridges, excursions and meanders. We show that their first N terms can be computed in quasi-linear complexity in N, without first computing a very large polynomial equation.

Read more
Symbolic Computation

Algebraic Diagonals and Walks: Algorithms, Bounds, Complexity

The diagonal of a multivariate power series F is the univariate power series Diag(F) generated by the diagonal terms of F. Diagonals form an important class of power series; they occur frequently in number theory, theoretical physics and enumerative combinatorics. We study algorithmic questions related to diagonals in the case where F is the Taylor expansion of a bivariate rational function. It is classical that in this case Diag(F) is an algebraic function. We propose an algorithm that computes an annihilating polynomial for Diag(F). We give a precise bound on the size of this polynomial and show that generically, this polynomial is the minimal polynomial and that its size reaches the bound. The algorithm runs in time quasi-linear in this bound, which grows exponentially with the degree of the input rational function. We then address the related problem of enumerating directed lattice walks. The insight given by our study leads to a new method for expanding the generating power series of bridges, excursions and meanders. We show that their first N terms can be computed in quasi-linear complexity in N, without first computing a very large polynomial equation.

Read more
Symbolic Computation

Algebraic Local Cohomology with Parameters and Parametric Standard Bases for Zero-Dimensional Ideals

A computation method of algebraic local cohomology with parameters, associated with zero-dimensional ideal with parameter, is introduced. This computation method gives us in particular a decomposition of the parameter space depending on the structure of algebraic local cohomology classes. This decomposition informs us several properties of input ideals and the output of our algorithm completely describes the multiplicity structure of input ideals. An efficient algorithm for computing a parametric standard basis of a given zero-dimensional ideal, with respect to an arbitrary local term order, is also described as an application of the computation method. The algorithm can always output "reduced" standard basis of a given zero-dimensional ideal, even if the zero-dimensional ideal has parameters.

Read more
Symbolic Computation

Algebraic independence of sequences generated by (cyclotomic) harmonic sums

An expression in terms of (cyclotomic) harmonic sums can be simplified by the quasi-shuffle algebra in terms of the so-called basis sums. By construction, these sums are algebraically independent within the quasi-shuffle algebra. In this article we show that the basis sums can be represented within a tower of difference ring extensions where the constants remain unchanged. This property enables one to embed this difference ring for the (cyclotomic) harmonic sums into the ring of sequences. This construction implies that the sequences produced by the basis sums are algebraically independent over the rational sequences adjoined with the alternating sequence.

Read more

Ready to get started?

Join us today