Featured Researches

Mesoscale And Nanoscale Physics

Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with Perpendicular Anisotropy

Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have been widely applied to emerging quantum sensing, imaging, and network efforts, showing unprecedented field sensitivity and nanoscale spatial resolution. Many of these advantages derive from their excellent quantum-coherence, controllable entanglement, and high fidelity of operations, enabling opportunities to outperform the classical counterpart. Exploiting this cutting-edge quantum metrology, we report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization. The measured field dependence of NV relaxation rates is well correlated to the variation of magnon density and band structure of the magnetic samples, which are challenging to access by the conventional magnetometry methods. Our results highlight the significant opportunities offered by NV centers in diagnosing the noise environment of functional magnetic elements, providing valuable information to design next-generation, high-density, and scalable spintronic devices.

Read more
Mesoscale And Nanoscale Physics

Quantum Shape Effects

Can we change the shape of a domain without altering its sizes? By introducing a size-invariant shape transformation, we propose the existence and explore the consequences of a new type of physical effect appearing at the quantum scales, which we call here as "quantum shape effect". By completely separating the shape effects from size effects, we show that shape alone becomes a control parameter on the thermodynamic state functions of confined systems at nanoscale. We develop an overlapped quantum boundary layer method to analytically predict the quantum shape effects, reducing a thermodynamic problem into a geometric one and revealing the profound link between the geometry and thermodynamics at the quantum scales. Furthermore, we introduce the isoformal, shape preserving, process which opens up the possibility of a new generation of thermodynamic cycles operating at nanoscale with unique features. As a whole, this thesis constitutes the proposition and a comprehensive investigation of the theory, construction of the methodology and exploration of the applications of quantum shape effects in thermodynamics.

Read more
Mesoscale And Nanoscale Physics

Quantum Spin-Valley Hall Kink States: From Concept to Realization

We propose a general and tunable platform to realize high-density arrays of quantum spin-valley Hall kink (QSVHK) states with spin-valley-momentum locking based on a two-dimensional hexagonal topological insulator. Through the analysis of Berry curvature and topological charge, the QSVHK states are found to be topologically protected by the valley-inversion and time-reversal symmetries. Remarkably, the conductance of QSVHK states remains quantized against either nonmagnetic or long-range magnetic disorder, verified by the Green function calculations. Based on first-principles results, we show that QSVHK states, protected with a gap up to 287 meV, can be realized in bismuthene by alloy engineering, surface functionalization, or electric field, supporting non-volatile applications of spin-valley filters, valves, and waveguides even at room temperature.

Read more
Mesoscale And Nanoscale Physics

Quantum disordered state of magnetic charges in nanoengineered honeycomb lattice

A quantum magnetic state due to magnetic charges is never observed, even though they are treated as quantum mechanical variable in theoretical calculations. Here, we demonstrate the occurrence of a novel quantum disordered state of magnetic charges in nanoengineered magnetic honeycomb lattice of ultra-small connecting elements. The experimental research, performed using spin resolved neutron scattering, reveals a massively degenerate ground state, comprised of low integer and energetically forbidden high integer magnetic charges, that manifests cooperative paramagnetism at low temperature. The system tends to preserve the degenerate configuration even under large magnetic field application. It exemplifies the robustness of disordered correlation of magnetic charges in 2D honeycomb lattice. The realization of quantum disordered ground state elucidates the dominance of exchange energy, which is enabled due to the nanoscopic magnetic element size in nanoengineered honeycomb. Consequently, an archetypal platform is envisaged to study quantum mechanical phenomena due to emergent magnetic charges.

Read more
Mesoscale And Nanoscale Physics

Quantum engineering with hybrid magnonics systems and materials

Quantum technology has made tremendous strides over the past two decades with remarkable advances in materials engineering, circuit design and dynamic operation. In particular, the integration of different quantum modules has benefited from hybrid quantum systems, which provide an important pathway for harnessing the different natural advantages of complementary quantum systems and for engineering new functionalities. This review focuses on the current frontiers with respect to utilizing magnetic excitatons or magnons for novel quantum functionality. Magnons are the fundamental excitations of magnetically ordered solid-state materials and provide great tunability and flexibility for interacting with various quantum modules for integration in diverse quantum systems. The concomitant rich variety of physics and material selections enable exploration of novel quantum phenomena in materials science and engineering. In addition, the relative ease of generating strong coupling and forming hybrid dynamic systems with other excitations makes hybrid magnonics a unique platform for quantum engineering. We start our discussion with circuit-based hybrid magnonic systems, which are coupled with microwave photons and acoustic phonons. Subsequently, we are focusing on the recent progress of magnon-magnon coupling within confined magnetic systems. Next we highlight new opportunities for understanding the interactions between magnons and nitrogen-vacancy centers for quantum sensing and implementing quantum interconnects. Lastly, we focus on the spin excitations and magnon spectra of novel quantum materials investigated with advanced optical characterization.

Read more
Mesoscale And Nanoscale Physics

Quantum interference and the time-dependent radiation of nanojunctions

Using the recently developed time-dependent Landauer-Büttiker formalism and Jefimenko's retarded solutions to the Maxwell equations, we show how to compute the time-dependent electromagnetic field produced by the charge and current densities in nanojunctions out of equilibrium. We then apply this formalism to a benzene ring junction, and show that geometry-dependent quantum interference effects can be used to control the magnetic field in the vicinity of the molecule. Then, treating the molecular junction as a quantum emitter, we demonstrate clear signatures of the local molecular geometry in the non-local radiated power.

Read more
Mesoscale And Nanoscale Physics

Quantum kinetics of anomalous and nonlinear Hall effects in topological semimetals

We present a systematic microscopic derivation of the semiclassical Boltzmann equation for band structures with the finite Berry curvature based on Keldysh technique of nonequilibrium systems. In the analysis, an ac electrical driving field is kept up to quadratic order, and both cases of small and large frequencies corresponding to intra- and interband transitions are considered. In particular, this formulation is suitable for the study of nonlinear Hall effect and photogalvanic phenomena. The role of impurity scattering is carefully addressed. Specifically, in addition to previously studied side-jump and skew-scattering processes, quantum interference diffractive contributions are now explicitly incorporated within the developed framework. This theory is applied to multifold fermions in topological semimetals, for which the generic formula for the skew scattering rate from the Pancharatnam phase is obtained along with the corresponding anomalous Hall conductivity.

Read more
Mesoscale And Nanoscale Physics

Quantum mold casting for topological insulating and edge states

We study the possibility of transferring fermions from a trivial system as particle source to an empty system but at topological phase as a mold for casting a stable topological insulator dynamically. We show that this can be realized by a non-Hermitian unidirectional hopping, which connects a central system at topological phase and a trivial flat-band system with a periodic driving chemical potential, which scans over the valence band of the central system. The near exceptional-point dynamics allows a unidirectional dynamical process: the time evolution from an initial state with full-filled source system to a stable topological insulating state approximately. The result is demonstrated numerically by a source-assistant QWZ model and SSH chain in the presence of random perturbation. Our finding reveals a classical analogy of quench dynamics in quantum matter and provides a way for topological quantum state engineering.

Read more
Mesoscale And Nanoscale Physics

Quantum oscillations in the zeroth Landau Level and the serpentine Landau fan

We identify an unusual mechanism for quantum oscillations in nodal semimetals, driven by a single pair of Landau levels periodically closing their gap at the Fermi energy as a magnetic field is varied. These `zero Landau level' quantum oscillations (ZQOs) appear in the nodal limit where the zero-field Fermi volume vanishes, and have distinctive periodicity and temperature dependence. We link the Landau spectrum of a two-dimensional (2D) nodal semimetal to the Rabi model, and show by exact solution that across the entire Landau fan, pairs of opposite-parity Landau levels are intertwined in a `serpentine' manner. We propose 2D surfaces of topological crystalline insulators as natural settings for ZQOs, and comment on implications for anomaly physics in 3D nodal semimetals.

Read more
Mesoscale And Nanoscale Physics

Quantum oscillations of the magnetic torque in the nodal-line Dirac semimetal ZrSiS

We report a study of quantum oscillations (QO) in the magnetic torque of the nodal-line Dirac semimetal ZrSiS in the magnetic fields up to 35 T and the temperature range from 40 K down to 2 K, enabling high resolution mapping of the Fermi surface (FS) topology in the k z =? (Z-R-A) plane of the first Brillouin zone (FBZ). It is found that the oscillatory part of the measured magnetic torque signal consists of low frequency (LF) contributions (frequencies up to 1000 T) and high frequency (HF) contributions (several clusters of frequencies from 7-22 kT). Increased resolution and angle-resolved measurements allow us to show that the high oscillation frequencies originate from magnetic breakdown (MB) orbits involving clusters of individual α hole and β electron pockets from the diamond shaped FS in the Z-R-A plane. Analyzing the HF oscillations we have unequivocally shown that the QO frequency from the dog-bone shaped Fermi pocket ( β pocket) amounts β=591(15) T. Our findings suggest that most of the frequencies in the LF part of QO can also be explained by MB orbits when intraband tunneling in the dog-bone shaped β electron pocket is taken into account. Our results give a new understanding of the novel properties of the FS of the nodal-line Dirac semimetal ZrSiS and sister compounds.

Read more

Ready to get started?

Join us today