Featured Researches

Audio And Speech Processing

Mispronunciation Detection in Non-native (L2) English with Uncertainty Modeling

A common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result in a significant amount of false mispronunciation alarms. We propose a novel approach to overcome this problem based on two principles: a) taking into account uncertainty in the automatic phoneme recognition step, b) accounting for the fact that there may be multiple valid pronunciations. We evaluate the model on non-native (L2) English speech of German, Italian and Polish speakers, where it is shown to increase the precision of detecting mispronunciations by up to 18% (relative) compared to the common approach.

Read more
Audio And Speech Processing

Mixing-Specific Data Augmentation Techniques for Improved Blind Violin/Piano Source Separation

Blind music source separation has been a popular and active subject of research in both the music information retrieval and signal processing communities. To counter the lack of available multi-track data for supervised model training, a data augmentation method that creates artificial mixtures by combining tracks from different songs has been shown useful in recent works. Following this light, we examine further in this paper extended data augmentation methods that consider more sophisticated mixing settings employed in the modern music production routine, the relationship between the tracks to be combined, and factors of silence. As a case study, we consider the separation of violin and piano tracks in a violin piano ensemble, evaluating the performance in terms of common metrics, namely SDR, SIR, and SAR. In addition to examining the effectiveness of these new data augmentation methods, we also study the influence of the amount of training data. Our evaluation shows that the proposed mixing-specific data augmentation methods can help improve the performance of a deep learning-based model for source separation, especially in the case of small training data.

Read more
Audio And Speech Processing

Mixture of Speaker-type PLDAs for Children's Speech Diarization

In diarization, the PLDA is typically used to model an inference structure which assumes the variation in speech segments be induced by various speakers. The speaker variation is then learned from the training data. However, human perception can differentiate speakers by age, gender, among other characteristics. In this paper, we investigate a speaker-type informed model that explicitly captures the known variation of speakers. We explore a mixture of three PLDA models, where each model represents an adult female, male, or child category. The weighting of each model is decided by the prior probability of its respective class, which we study. The evaluation is performed on a subset of the BabyTrain corpus. We examine the expected performance gain using the oracle speaker type labels, which yields an 11.7% DER reduction. We introduce a novel baby vocalization augmentation technique and then compare the mixture model to the single model. Our experimental result shows an effective 0.9% DER reduction obtained by adding vocalizations. We discover empirically that a balanced dataset is important to train the mixture PLDA model, which outperforms the single PLDA by 1.3% using the same training data and achieving a 35.8% DER. The same setup improves over a standard baseline by 2.8% DER.

Read more
Audio And Speech Processing

Model architectures to extrapolate emotional expressions in DNN-based text-to-speech

This paper proposes architectures that facilitate the extrapolation of emotional expressions in deep neural network (DNN)-based text-to-speech (TTS). In this study, the meaning of "extrapolate emotional expressions" is to borrow emotional expressions from others, and the collection of emotional speech uttered by target speakers is unnecessary. Although a DNN has potential power to construct DNN-based TTS with emotional expressions and some DNN-based TTS systems have demonstrated satisfactory performances in the expression of the diversity of human speech, it is necessary and troublesome to collect emotional speech uttered by target speakers. To solve this issue, we propose architectures to separately train the speaker feature and the emotional feature and to synthesize speech with any combined quality of speakers and emotions. The architectures are parallel model (PM), serial model (SM), auxiliary input model (AIM), and hybrid models (PM&AIM and SM&AIM). These models are trained through emotional speech uttered by few speakers and neutral speech uttered by many speakers. Objective evaluations demonstrate that the performances in the open-emotion test provide insufficient information. They make a comparison with those in the closed-emotion test, but each speaker has their own manner of expressing emotion. However, subjective evaluation results indicate that the proposed models could convey emotional information to some extent. Notably, the PM can correctly convey sad and joyful emotions at a rate of >60%.

Read more
Audio And Speech Processing

Modeling Prosodic Phrasing with Multi-Task Learning in Tacotron-based TTS

Tacotron-based end-to-end speech synthesis has shown remarkable voice quality. However, the rendering of prosody in the synthesized speech remains to be improved, especially for long sentences, where prosodic phrasing errors can occur frequently. In this paper, we extend the Tacotron-based speech synthesis framework to explicitly model the prosodic phrase breaks. We propose a multi-task learning scheme for Tacotron training, that optimizes the system to predict both Mel spectrum and phrase breaks. To our best knowledge, this is the first implementation of multi-task learning for Tacotron based TTS with a prosodic phrasing model. Experiments show that our proposed training scheme consistently improves the voice quality for both Chinese and Mongolian systems.

Read more
Audio And Speech Processing

Modular End-to-end Automatic Speech Recognition Framework for Acoustic-to-word Model

End-to-end (E2E) systems have played a more and more important role in automatic speech recognition (ASR) and achieved great performance. However, E2E systems recognize output word sequences directly with the input acoustic feature, which can only be trained on limited acoustic data. The extra text data is widely used to improve the results of traditional artificial neural network-hidden Markov model (ANN-HMM) hybrid systems. The involving of extra text data to standard E2E ASR systems may break the E2E property during decoding. In this paper, a novel modular E2E ASR system is proposed. The modular E2E ASR system consists of two parts: an acoustic-to-phoneme (A2P) model and a phoneme-to-word (P2W) model. The A2P model is trained on acoustic data, while extra data including large scale text data can be used to train the P2W model. This additional data enables the modular E2E ASR system to model not only the acoustic part but also the language part. During the decoding phase, the two models will be integrated and act as a standard acoustic-to-word (A2W) model. In other words, the proposed modular E2E ASR system can be easily trained with extra text data and decoded in the same way as a standard E2E ASR system. Experimental results on the Switchboard corpus show that the modular E2E model achieves better word error rate (WER) than standard A2W models.

Read more
Audio And Speech Processing

Multi-Task Learning for Interpretable Weakly Labelled Sound Event Detection

Weakly Labelled learning has garnered lot of attention in recent years due to its potential to scale Sound Event Detection (SED) and is formulated as Multiple Instance Learning (MIL) problem. This paper proposes a Multi-Task Learning (MTL) framework for learning from Weakly Labelled Audio data which encompasses the traditional MIL setup. To show the utility of proposed framework, we use the input TimeFrequency representation (T-F) reconstruction as the auxiliary task. We show that the chosen auxiliary task de-noises internal T-F representation and improves SED performance under noisy recordings. Our second contribution is introducing two step Attention Pooling mechanism. By having 2-steps in attention mechanism, the network retains better T-F level information without compromising SED performance. The visualisation of first step and second step attention weights helps in localising the audio-event in T-F domain. For evaluating the proposed framework, we remix the DCASE 2019 task 1 acoustic scene data with DCASE 2018 Task 2 sounds event data under 0, 10 and 20 db SNR resulting in a multi-class Weakly labelled SED problem. The proposed total framework outperforms existing benchmark models over all SNRs, specifically 22.3 %, 12.8 %, 5.9 % improvement over benchmark model on 0, 10 and 20 dB SNR respectively. We carry out ablation study to determine the contribution of each auxiliary task and 2-step Attention Pooling to the SED performance improvement. The code is publicly released

Read more
Audio And Speech Processing

Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by Spiking Neural Network

Inspired by the mammal's auditory localization pathway, in this paper we propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment, and implement this algorithm in a real-time robotic system with a microphone array. The key of this model relies on the MTPC scheme, which encodes the interaural time difference (ITD) cues into spike patterns. This scheme naturally follows the functional structures of the human auditory localization system, rather than artificially computing of time difference of arrival. Besides, it highlights the advantages of SNN, such as event-driven and power efficiency. The MTPC is pipelined with two different SNN architectures, the convolutional SNN and recurrent SNN, by which it shows the applicability to various SNNs. This proposal is evaluated by the microphone collected location-dependent acoustic data, in a real-world environment with noise, obstruction, reflection, or other affects. The experiment results show a mean error azimuth of 1~3 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.

Read more
Audio And Speech Processing

Multi-modal Attention for Speech Emotion Recognition

Emotion represents an essential aspect of human speech that is manifested in speech prosody. Speech, visual, and textual cues are complementary in human communication. In this paper, we study a hybrid fusion method, referred to as multi-modal attention network (MMAN) to make use of visual and textual cues in speech emotion recognition. We propose a novel multi-modal attention mechanism, cLSTM-MMA, which facilitates the attention across three modalities and selectively fuse the information. cLSTM-MMA is fused with other uni-modal sub-networks in the late fusion. The experiments show that speech emotion recognition benefits significantly from visual and textual cues, and the proposed cLSTM-MMA alone is as competitive as other fusion methods in terms of accuracy, but with a much more compact network structure. The proposed hybrid network MMAN achieves state-of-the-art performance on IEMOCAP database for emotion recognition.

Read more
Audio And Speech Processing

Multi-speaker Emotion Conversion via Latent Variable Regularization and a Chained Encoder-Decoder-Predictor Network

We propose a novel method for emotion conversion in speech based on a chained encoder-decoder-predictor neural network architecture. The encoder constructs a latent embedding of the fundamental frequency (F0) contour and the spectrum, which we regularize using the Large Diffeomorphic Metric Mapping (LDDMM) registration framework. The decoder uses this embedding to predict the modified F0 contour in a target emotional class. Finally, the predictor uses the original spectrum and the modified F0 contour to generate a corresponding target spectrum. Our joint objective function simultaneously optimizes the parameters of three model blocks. We show that our method outperforms the existing state-of-the-art approaches on both, the saliency of emotion conversion and the quality of resynthesized speech. In addition, the LDDMM regularization allows our model to convert phrases that were not present in training, thus providing evidence for out-of-sample generalization.

Read more

Ready to get started?

Join us today