Featured Researches

Materials Theory

Density-Functional Theory of the nonlinear optical susceptibility: application to cubic semiconductors

We present a general scheme for the computation of the time dependent (TD) quadratic susceptibility ( χ (2) ) of an extended insulator obtained by applying the ` 2n+1 ' theorem to the action functional as defined in TD density functional theory. The resulting expression for χ (2) includes self-consistent local-field effects, and is a simple function of the linear response of the system. We compute the static χ (2) of nine III-V and five II-VI semiconductors using the local density approximation(LDA) obtaining good agreement with experiment. For GaP we also evaluate the TD χ (2) for second harmonic generation using TD-LDA.

Read more
Materials Theory

Density-Functional-Based Determination of the CH3-CH4 Hydrogen Exchange Reaction Barrier

Due to the overbinding that is inherent in existing {\em local} approximations to the density-functional formalism, certain reaction energies have not been accessible. Since the generalized gradient approximation significantly decreases the overbinding, prospects for density-functional-based reaction dynamics are promising. Results on the generalized-gradient based determination of the CH3-CH4 hydrogen exchange reaction are presented. Including all Born-Oppenheimer effects an energy barrier of 9.5 kcal/Mole is found which is a very significant improvement over the local-density approximation.

Read more
Materials Theory

Density-Polarization Functional Theory of the response of a periodic insulating solid to an electric field.

The response of an infinite, periodic, insulating, solid to an infinitesimally small electric field is investigated in the framework of Density Functional Theory. We find that the applied perturbing potential is not a unique functional of the periodic density change~: it depends also on the change in the macroscopic {\em polarization}. Moreover, the dependence of the exchange-correlation energy on polarization induces an exchange-correlation electric field. These effects are exhibited for a model semiconductor. We also show that the scissor-operator technique is an approximate way of bypassing this polarization dependence.

Read more
Materials Theory

Development of a Kohn-Sham like potential in the Self-Consistent Atomic Deformation Model

This is a brief description of how to derive the local ``atomic'' potentials from the Self-Consistent Atomic Deformation (SCAD) model density function. Particular attention is paid to the spherically averaged case.

Read more
Materials Theory

Diffusivity of Ga and Al adatoms on GaAs(001)

The diffusivity of Ga and Al adatoms on the (2x4) reconstructed GaAs(001) surface are evaluated using detailed ab initio total energy calculations of the potential energy surface together with transition state theory. A strong diffusion anisotropy is found, with the direction of fastest diffusion being parallel to the surface As-dimer orientation. In contrast to previous calculations we identify a short--bridge position between the two As atoms of a surface dimer as the adsorption site for Al and Ga adatoms.

Read more
Materials Theory

Dynamical Quantum Processes of Molecular Beams at Surfaces: Dissociative Adsorption of Hydrogen on Metal Surfaces

Due to the improvement of computer power and the development of efficient algorithms it is now possible to combine high-dimensional quantum dynamical calculations of the dissociative adsorption of molecular beams with reliable ab-initio potential energy surfaces (PES). In this brief review two recent examples of such studies of the systems H_2/Cu(111), where adsorption is hindered by a noticeable energy barrier, and H_2/Pd(100), where activated as well as non-activated paths to adsorption exist, are presented. The effect of lateral surface corrugations on the sticking probability in the tunneling and the classical regime and the role of additional parallel momentum are discussed in the context of the H_2/Cu(111) results. For the system H_2/Pd(100) it is shown that the initial decrease of the sticking probability with increasing kinetic energy, which is usually attributed to a precursor mechanism, can be explained by dynamical steering. In addition, the influence of rotation on the adsorption and desorption dynamics is examined.

Read more
Materials Theory

ELECTRONIC STRUCTURE OF FeSi

The full set of high-energy spectroscopy measurements including X-ray photoelectron valence band spectra and soft X-ray emission valence band spectra of both components of FeSi (Fe K_beta_5, Fe L_alpha, Si K_beta_1,3 and Si L_2,3) are performed and compared with the results of ab-initio band structure calculations using the linearized muffin-tin orbital method and linearized augmented plane wave method.

Read more
Materials Theory

Effect of quantum fluctuations on structural phase transitions in SrTiO_3 and BaTiO_3

Using path-integral Monte Carol simulations and an ab initio effective Hamiltonian, we study the effects of quantum fluctuations on structural phase transitions in the cubic perovskite compounds SrTiO3 and BaTiO3. We find quantum fluctuations affect ferroelectric (FE) transitions more strongly than antiferrodistortive (AFD) ones, even though the effective mass of a single FE local mode is larger. For SrTiO3 we find that the quantum fluctuations suppress the FE transition completely, and reduce the AFD transition temperature from 130K to 110K. For BaTiO3, quantum fluctuations do not affect the order of the transition, but do reduce the transition temperature by 35-50 K. The implications of the calculations are discussed.

Read more
Materials Theory

Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility

We present a systematic study of the effect of crack blunting on subsequent crack propagation and dislocation emission. We show that the stress intensity factor required to propagate the crack is increased as the crack is blunted by up to thirteen atomic layers, but only by a relatively modest amount for a crack with a sharp 60 ∘ corner. The effect of the blunting is far less than would be expected from a smoothly blunted crack; the sharp corners preserve the stress concentration, reducing the effect of the blunting. However, for some material parameters blunting changes the preferred deformation mode from brittle cleavage to dislocation emission. In such materials, the absorption of preexisting dislocations by the crack tip can cause the crack tip to be locally arrested, causing a significant increase in the microscopic toughness of the crack tip. Continuum plasticity models have shown that even a moderate increase in the microscopic toughness can lead to an increase in the macroscopic fracture toughness of the material by several orders of magnitude. We thus propose an atomic-scale mechanism at the crack tip, that ultimately may lead to a high fracture toughness in some materials where a sharp crack would seem to be able to propagate in a brittle manner. Results for blunt cracks loaded in mode II are also presented.

Read more
Materials Theory

Electronic Structure and Valence Band Spectra of Bi4Ti3O12

The x-ray photoelectron valence band spectrum and x-ray emission valence-band spectra (Ti K _beta_5, Ti L_alpha, O K_alpha) of Bi4Ti3O12 are presented (analyzed in the common energy scale) and interpreted on the basis of a band-structure calculation for an idealized I4/mmm structure of this material.

Read more

Ready to get started?

Join us today