Featured Researches

Numerical Analysis

An a posteriori strategy for adaptive schemes in time and space

A nonlinear adaptive procedure for optimising both the schemes in time and space is proposed in view of increasing the numerical efficiency and reducing the computational time. The method is based on a four-parameter family of schemes we shall tune in function of the physical data (velocity, diffusion), the characteristic size in time and space, and the local regularity of the function leading to a nonlinear procedure. The \textit{a posteriori} strategy we adopt consists in, given the solution at time t n , computing a candidate solution with the highest accurate schemes in time and space for all the nodes. Then, for the nodes that present some instabilities, both the schemes in time and space are modified and adapted in order to preserve the stability with a large time step. The updated solution is computed with node-dependent schemes both in time and space. For the sake of simplicity, only convection-diffusion problems are addressed as a prototype with a two-parameters five-points finite difference method for the spatial discretisation together with an explicit time two-parameters four-stages Runge-Kutta method. We prove that we manage to obtain an optimal time-step algorithm that produces accurate numerical approximations exempt of non-physical oscillations.

Read more
Numerical Analysis

An adaptive finite element DtN method for the elastic wave scattering problem in three dimensions

Consider the elastic scattering of an incident wave by a rigid obstacle in three dimensions, which is formulated as an exterior problem for the Navier equation. By constructing a Dirichlet-to-Neumann (DtN) operator and introducing a transparent boundary condition, the scattering problem is reduced equivalently to a boundary value problem in a bounded domain. The discrete problem with the truncated DtN operator is solved by using the a posteriori error estimate based adaptive finite element method. The estimate takes account of both the finite element approximation error and the truncation error of the DtN operator, where the latter is shown to converge exponentially with respect to the truncation parameter. Moreover, the generalized Woodbury matrix identity is utilized to solve the resulting linear system efficiently. Numerical experiments are presented to demonstrate the superior performance of the proposed method.

Read more
Numerical Analysis

An adaptive high-order unfitted finite element method for elliptic interface problems

We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which allows us to prove the stability of the finite element method under practical interface resolving mesh conditions and also prove the lower bound of the hp a posteriori error estimate. Numerical examples are included.

Read more
Numerical Analysis

An approximation method for electromagnetic wave models based on fractional partial derivative

The present article is devoting a numerical approach for solving a fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM). The truncated Bernoulli and Hermite wavelets series with unknown coefficients have been used to approximate the solution in both the temporal and spatial variables. The basic idea for discretizing the FPDE is wavelet approximation based on the Bernoulli and Hermite wavelets operational matrices of integration and differentiation. The resulted system of a linear algebraic equation has been solved by the collocation method. Moreover, convergence and error analysis have been discussed. Finally, several numerical experiments with different fractional-order derivatives have been provided and compared with the exact analytical solutions to illustrate the accuracy and efficiency of the method.

Read more
Numerical Analysis

An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency

In this paper we present a novel arbitrary-order discrete de Rham (DDR) complex on general polyhedral meshes based on the decomposition of polynomial spaces into the ranges of vector calculus operators and complements linked to the spaces in the Koszul complex. The DDR complex is fully discrete, meaning that both the spaces and discrete calculus operators are replaced by discrete counterparts. We prove a complete panel of results for the analysis of discretisation schemes for partial differential equations based on this complex: exactness properties, uniform Poincaré inequalities, as well as primal and adjoint consistency. We also show how this DDR complex enables the design of a numerical scheme for a magnetostatics problem, and use the aforementioned results to prove stability and optimal error estimates for this scheme.

Read more
Numerical Analysis

An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture

Meshfree discretizations of state-based peridynamic models are attractive due to their ability to naturally describe fracture of general materials. However, two factors conspire to prevent meshfree discretizations of state-based peridynamics from converging to corresponding local solutions as resolution is increased: quadrature error prevents an accurate prediction of bulk mechanics, and the lack of an explicit boundary representation presents challenges when applying traction loads. In this paper, we develop a reformulation of the linear peridynamic solid (LPS) model to address these shortcomings, using improved meshfree quadrature, a reformulation of the nonlocal dilitation, and a consistent handling of the nonlocal traction condition to construct a model with rigorous accuracy guarantees. In particular, these improvements are designed to enforce discrete consistency in the presence of evolving fractures, whose {\it a priori} unknown location render consistent treatment difficult. In the absence of fracture, when a corresponding classical continuum mechanics model exists, our improvements provide asymptotically compatible convergence to corresponding local solutions, eliminating surface effects and issues with traction loading which have historically plagued peridynamic discretizations. When fracture occurs, our formulation automatically provides a sharp representation of the fracture surface by breaking bonds, avoiding the loss of mass. We provide rigorous error analysis and demonstrate convergence for a number of benchmarks, including manufactured solutions, free-surface, nonhomogeneous traction loading, and composite material problems. Finally, we validate simulations of brittle fracture against a recent experiment of dynamic crack branching in soda-lime glass, providing evidence that the scheme yields accurate predictions for practical engineering problems.

Read more
Numerical Analysis

An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime

It has recently been demonstrated that dynamical low-rank algorithms can provide robust and efficient approximation to a range of kinetic equations. This is true especially if the solution is close to some asymptotic limit where it is known that the solution is low-rank. A particularly interesting case is the fluid dynamic limit that is commonly obtained in the limit of small Knudsen number. However, in this case the Maxwellian which describes the corresponding equilibrium distribution is not necessarily low-rank; because of this, the methods known in the literature are only applicable to the weakly compressible case. In this paper, we propose an efficient dynamical low-rank integrator that can capture the fluid limit -- the Navier-Stokes equations -- of the Boltzmann-BGK model even in the compressible regime. This is accomplished by writing the solution as f=Mg , where M is the Maxwellian and the low-rank approximation is only applied to g . To efficiently implement this decomposition within a low-rank framework requires, in the isothermal case, that certain coefficients are evaluated using convolutions, for which fast algorithms are known. Using the proposed decomposition also has the advantage that the rank required to obtain accurate results is significantly reduced compared to the previous state of the art. We demonstrate this by performing a number of numerical experiments and also show that our method is able to capture sharp gradients/shock waves.

Read more
Numerical Analysis

An efficient feature-preserving PDE algorithm for image denoising based on a spatial-fractional anisotropic diffusion equation

How to effectively remove the noise while preserving the image structure features is a challenging issue in the field of image denoising. In recent years, fractional PDE based methods have attracted more and more research efforts due to the ability to balance the noise removal and the preservation of image edges and textures. Among the existing fractional PDE algorithms, there are only a few using spatial fractional order derivatives, and all the fractional derivatives involved are one-sided derivatives. In this paper, an efficient feature-preserving fractional PDE algorithm is proposed for image denoising based on a nonlinear spatial-fractional anisotropic diffusion equation. Two-sided Grumwald-Letnikov fractional derivatives were used in the PDE model which are suitable to depict the local self-similarity of images. The Short Memory Principle is employed to simplify the approximation scheme. Experimental results show that the proposed method is of a satisfactory performance, i.e. it keeps a remarkable balance between noise removal and feature preserving, and has an extremely high structural retention property.

Read more
Numerical Analysis

An efficient method for modeling flow in porous media with immersed faults

Modeling flow in geosystems with natural fault is a challenging problem due to low permeability of fault compared to its surrounding porous media. One way to predict the behavior of the flow while taking the effects of fault into account is to use the mixed finite element method. However, the mixed method could be time consuming due to large number of degree of freedom since both pressure and velocity are considered in the system. A new modeling method is presented in this paper. First, we introduce approximations of pressure based on the relation of pressure and velocity. We furthure decouple the approximated pressure from velocity so that it can be solved independently by continuous Galerkin finite element method. The new problem involves less degree of freedom than the mixed method for a given mesh . Moreover, local problem associated with a small subdomain around the fault is additionally solved to increase the accuracy of approximations around fault. Numerical experiments are conducted to examine the accuracy and efficiency of the new method. Results of three-dimensional tests show that our new method is up to 30 Ă— faster than the the mixed method at given L 2 pressure error.

Read more
Numerical Analysis

An efficient monolithic solution scheme for FE 2 problems

The FE 2 method is a very flexible but computationally expensive tool for multiscale simulations. In conventional implementations, the microscopic displacements are iteratively solved for within each macroscopic iteration loop, although the macroscopic strains imposed as boundary conditions at the micro-scale only represent estimates. In order to reduce the number of expensive micro-scale iterations, the present contribution presents a monolithic FE 2 scheme, for which the displacements at the micro-scale and at the macro-scale are solved for in a common Newton-Raphson loop. In this case, the linear system of equations within each iteration is solved by static condensation, so that only very limited modifications to the conventional, staggered scheme are necessary. The proposed monolithic FE 2 algorithm is implemented into the commercial FE code Abaqus. Benchmark examples demonstrate that the monolithic scheme saves up to ~60% of computational costs.

Read more

Ready to get started?

Join us today