Featured Researches

Numerical Analysis

A quasi-conservative DG-ALE method for multi-component flows using the non-oscillatory kinetic flux

A high-order quasi-conservative discontinuous Galerkin (DG) method is proposed for the numerical simulation of compressible multi-component flows. A distinct feature of the method is a predictor-corrector strategy to define the grid velocity. A Lagrangian mesh is first computed based on the flow velocity and then used as an initial mesh in a moving mesh method (the moving mesh partial differential equation or MMPDE method ) to improve its quality. The fluid dynamic equations are discretized in the direct arbitrary Lagrangian-Eulerian framework using DG elements and the non-oscillatory kinetic flux while the species equation is discretized using a quasi-conservative DG scheme to avoid numerical oscillations near material interfaces. A selection of one- and two-dimensional examples are presented to verify the convergence order and the constant-pressure-velocity preservation property of the method. They also demonstrate that the incorporation of the Lagrangian meshing with the MMPDE moving mesh method works well to concentrate mesh points in regions of shocks and material interfaces.

Read more
Numerical Analysis

A rational Even-IRA algorithm for the solution of T-even polynomial eigenvalue problems

In this work we present a rational Krylov subspace method for solving real large-scale polynomial eigenvalue problems with T-even (that is, symmetric/skew-symmetric) structure. Our method is based on the Even-IRA algorithm. To preserve the structure, a sparse T-even linearization from the class of block minimal bases pencils is applied. Due to this linearization, the Krylov basis vectors can be computed in a cheap way. A rational decomposition is derived so that our method explicitly allows for changes of the shift during the iteration. This leads to a method that is able to compute parts of the spectrum of a T-even matrix polynomial in a fast and reliable way.

Read more
Numerical Analysis

A reduced order model for a stable embedded boundary parametrized Cahn-Hilliard phase-field system based on cut finite elements

In the present work, we investigate a cut finite element method for the parameterized system of second-order equations stemming from the splitting approach of a fourth order nonlinear geometrical PDE, namely the Cahn-Hilliard system. We manage to tackle the instability issues of such methods whenever strong nonlinearities appear and to utilize their flexibility of the fixed background geometry -- and mesh -- characteristic, through which, one can avoid e.g. in parametrized geometries the remeshing on the full order level, as well as, transformations to reference geometries on the reduced level. As a final goal, we manage to find an efficient global, concerning the geometrical manifold, and independent of geometrical changes, reduced order basis. The POD-Galerkin approach exhibits its strength even with pseudo-random discontinuous initial data verified by numerical experiments.

Read more
Numerical Analysis

A simple low-degree optimal finite element scheme for the elastic transmission eigenvalue problem

The paper presents a finite element scheme for the elastic transmission eigenvalue problem written as a fourth order eigenvalue problem. The scheme uses piecewise cubic polynomials and obtains optimal convergence rate. Compared with other low-degree and nonconforming finite element schemes, the scheme inherits the continuous bilinear form which does not need extra stabilizations and is thus simple to implement.

Read more
Numerical Analysis

A single-layer based numerical method for the slender body boundary value problem

Fluid flows containing dilute or dense suspensions of thin fibers are widespread in biological and industrial processes. To describe the motion of a thin immersed fiber, or to describe the forces acting on it, it is convenient to work with one-dimensional fiber centerlines and force densities rather than two-dimensional surfaces and surface tractions. Slender body theories offer ways to model and simulate the motion of immersed fibers using only one-dimensional data. However, standard formulations can break down when the fiber surface comes close to intersecting itself or other fibers. In this paper we introduce a numerical method for a recently derived three-dimensional slender body boundary value problem that can be stated entirely in terms of a one-dimensional distribution of forces on the centerline. The method is based on a new completed single-layer potential formulation of fluid velocity which circumvents some of the traditional conditioning issues associated with the unmodified single layer potential. We give numerical results demonstrating the good conditioning and improved performance of the method in the presence of near-intersections.

Read more
Numerical Analysis

A space-time discretization of a nonlinear peridynamic model on a 2D lamina

Peridynamics is a nonlocal theory for dynamic fracture analysis consisting in a second order in time partial integro-differential equation. In this paper, we consider a nonlinear model of peridynamics in a two-dimensional spatial domain. We implement a spectral method for the space discretization based on the Fourier expansion of the solution while we consider the Newmark- β method for the time marching. This computational approach takes advantages from the convolutional form of the peridynamic operator and from the use of the discrete Fourier transform. We show a convergence result for the fully discrete approximation and study the stability of the method applied to the linear peridynamic model. Finally, we perform several numerical tests and comparisons to validate our results and provide simulations implementing a volume penalization technique to avoid the limitation of periodic boundary conditions due to the spectral approach.

Read more
Numerical Analysis

A space-time isogeometric method for the partial differential-algebraic system of Biot's poroelasticity model

Biot's equations of poroelasticity contain a parabolic system for the evolution of the pressure, which is coupled with a quasi-stationary equation for the stress tensor. Thus, it is natural to extend the existing work on isogeometric space-time methods to this more advanced framework of a partial differential-algebraic equation (PDAE). A space-time approach based on finite elements has already been introduced. But we present a new weak formulation in space and time that is appropriate for an isogeometric discretization and analyze the convergence properties. Our approach is based on a single variational problem and hence differs from the iterative space-time schemes considered so far. Further, it enables high-order convergence. Numerical experiments that have been carried out confirm the theoretical findings.

Read more
Numerical Analysis

A sparse grid discrete ordinate discontinuous Galerkin method for the radiative transfer equation

The radiative transfer equation is a fundamental equation in transport theory and applications, which is a 5-dimensional PDE in the stationary one-velocity case, leading to great difficulties in numerical simulation. To tackle this bottleneck, we first use the discrete ordinate technique to discretize the scattering term, an integral with respect to the angular variables, resulting in a semi-discrete hyperbolic system. Then, we make the spatial discretization by means of the discontinuous Galerkin (DG) method combined with the sparse grid method. The final linear system is solved by the block Gauss-Seidal iteration method. The computational complexity and error analysis are developed in detail, which show the new method is more efficient than the original discrete ordinate DG method. A series of numerical results are performed to validate the convergence behavior and effectiveness of the proposed method.

Read more
Numerical Analysis

A splitting scheme for the coupled Saint-Venant-Exner model

We present a splitting method for the one-dimensional Saint-Venant-Exner equations used for describing the bed evolution in shallow water systems. We adapt the flux vector splitting approach of Toro and Vazquez-Cendòn and identify one subsystem of conservative equations (advection system) and one of non-conservative equations (pressure system), both having a very simple eigenstructure compared to the full system. The final numerical scheme is constructed using a Godunov-type path-conservative scheme for the pressure system and a simple conservative Godunov method for the advection system and solved following a coupled solution strategy. The resulting first-order accurate method is extended to second order of accuracy in space and time via the ADER approach together with an AENO reconstruction technique. Accuracy, robustness and well-balanced properties of the resulting scheme are assessed through a carefully selected suite of testcases. The scheme is exceedingly simple, accurate and robust as the sophisticated Godunov methods. A distinctive feature of the novel scheme is its flexibility in the choice of the sediment transport closure formula, which makes it particularly attractive for scientific and engineering applications.

Read more
Numerical Analysis

A splitting semi-implicit method for stochastic incompressible Euler equations on T 2

The main difficulty in studying numerical method for stochastic evolution equations (SEEs) lies in the treatment of the time discretization (J. Printems. [ESAIM Math. Model. Numer. Anal. (2001)]). Although fruitful results on numerical approximations for SEEs have been developed, as far as we know, none of them include that of stochastic incompressible Euler equations. To bridge this gap, this paper proposes and analyses a splitting semi-implicit method in temporal direction for stochastic incompressible Euler equations on torus T 2 driven by an additive noise. By a Galerkin approximation and the fixed point technique, we establish the unique solvability of the proposed method. Based on the regularity estimates of both exact and numerical solutions, we measure the error in L 2 ( T 2 ) and show that the pathwise convergence order is nearly 1 2 and the convergence order in probability is almost 1 .

Read more

Ready to get started?

Join us today