Researchain Logo Researchain
  • Decentralized Journals

    A

    Archives
  • Avatar
    Welcome to Researchain!
    Feedback Center
Decentralized Journals
A
Archives Updated
Archive Your Research
High Energy Physics - Phenomenology

Astrophysical neutrino oscillations accounting for neutrino charge radii

Konstantin Kouzakov,  Fedor Lazarev,  Vadim Shakhov,  Konstantin Stankevich,  Alexander Studenikin

Abstract
We derive for the first time an effective neutrino evolution Hamiltonian accounting for neutrino interactions with external magnetic field due to neutrino charge radii and anapole moment. The results are interesting for possible applications in astrophysics.
Full PDF

aa r X i v : . [ h e p - ph ] F e b Astrophysical neutrino oscillations accounting forneutrino charge radii

Konstantin Kouzakov, ๐‘Ž Fedor Lazarev, ๐‘Ž Vadim Shakhov, ๐‘Ž Konstantin Stankevich ๐‘Ž, โˆ— and Alexander Studenikin ๐‘Ž,๐‘ ๐‘Ž Faculty of Physics, Lomonosov Moscow State University,Moscow 119991, Russia ๐‘ Joint Institute for Nuclear Research,Dubna 141980, Moscow Region, Russia

E-mail: [email protected], [email protected]

We derive for the ๏ฌrst time an e๏ฌ€ective neutrino evolution Hamiltonian accounting for neutrinointeractions with external magnetic ๏ฌeld due to neutrino charge radii and anapole moment. Theresults are interesting for possible applications in astrophysics. โˆ— Speaker ยฉ Copyright owned by the author(s) under the terms of the Creative CommonsAttribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ strophysical neutrino oscillations accounting for neutrino charge radii

Konstantin StankevichIt is well known that neutrino electromagnetic interactions [1] are important for neutrinoevolution and oscillations in di๏ฌ€erent astrophysical environments (see, for example, [2โ€“4]). Weconsider for the ๏ฌrst time neutrino ๏ฌ‚avour, spin and spin-๏ฌ‚avour oscillations engendered by neutrinointeractions with an external magnetic ๏ฌeld due to neutrino charge radii and anapole moment. Note,that in this case only the toroidal and poloidal magnetic ๏ฌelds matters. We perform similarcalculations that were performed for derivations of the neutrino e๏ฌ€ective evolution Hamiltonians inthe presence of magnetic ๏ฌelds and moving matter [5, 6].The neutrino electromagnetic interactions is described by the e๏ฌ€ective interaction Hamiltonian[1] ๐ป ๐‘–๐‘›๐‘ก ( ๐‘ฅ ) = ๐‘— ( ๐œˆ ) ๐œ‡ ( ๐‘ฅ ) ๐ด ๐œ‡ ( ๐‘ฅ ) = ร• ๐‘˜, ๐‘— ยฏ ๐œˆ ๐‘˜ ( ๐‘ฅ ) ฮ› ๐œ‡๐‘˜ ๐‘— ๐œˆ ๐‘— ( ๐‘ฅ ) ๐ด ๐œ‡ ( ๐‘ฅ ) , (1)where ฮ› ๐œ‡๐‘˜ ๐‘— is the neutrino electromagnetic vertex function. Here below, we are interested only inthe charge radii h ๐‘Ÿ i ๐‘“ ๐ด in ฮ› ๐œ‡๐‘˜ ๐‘— , thus we use ฮ› ๐œ‡๐‘“ ๐‘– ( ๐‘ž ) = ( ๐‘ž ๐›พ ๐œ‡ โˆ’ ๐‘ž ๐œ‡ ๐›พ ๐œˆ ๐‘ž ๐œˆ ) " h ๐‘Ÿ i ๐‘“ ๐‘– + ๐‘“ ๐ด๐‘“ ๐‘– ๐›พ . (2)Within calculations similar to those of [5, 6], we get the following e๏ฌ€ective interaction Hamiltonianfor the considered case: ๐ป ๐‘ ๐‘  โ€ฒ ๐›ผ๐›ผ โ€ฒ = ๐‘ข โ€  ๐‘  ๐›ผ (cid:26) [ curl ๐‘ฉ ] | | (cid:18) h ๐‘Ÿ i ๐›ผ๐›ผ โ€ฒ + ๐‘“ ๐ด๐›ผ๐›ผ โ€ฒ ๐œŽ (cid:19) + [ curl ๐‘ฉ ] โŠฅ (cid:18) ๐›พ โˆ’ ๐›ผ๐›ผ โ€ฒ ๐‘“ ๐ด๐›ผ๐›ผ โ€ฒ ๐œŽ โˆ’ ๐‘– หœ ๐›พ โˆ’ ๐›ผ๐›ผ โ€ฒ h ๐‘Ÿ i ๐›ผ๐›ผ โ€ฒ ๐œŽ (cid:19) (cid:27) ๐‘ข ๐‘  โ€ฒ ๐›ผ โ€ฒ , (3)where [ curl ๐‘ฉ ] | | is the component of the curl of the magnetic ๏ฌeld parallel to the neutrino propagationand [ curl ๐‘ฉ ] โŠฅ is the perpendicular component, ๐‘ข ๐‘  ๐›ผ is the neutrino spinor. The gamma factors aregiven by ๐›พ โˆ’ ๐›ผ = ๐‘š ๐›ผ ๐ธ ๐›ผ , ๐›พ โˆ’ ๐›ผ๐›ฝ = (cid:16) ๐›พ โˆ’ ๐›ผ + ๐›พ โˆ’ ๐›ฝ (cid:17) , หœ ๐›พ โˆ’ ๐›ผ๐›ฝ = (cid:16) ๐›พ โˆ’ ๐›ผ โˆ’ ๐›พ โˆ’ ๐›ฝ (cid:17) . One can see that [ curl ๐‘ฉ ] | | is responsible for the ๏ฌ‚avour oscillations and [ curl ๐‘ฉ ] โŠฅ is responsiblefor the spin and spin-๏ฌ‚avour oscillations. Note, the spin and spin-๏ฌ‚avour oscillations are suppressedby gamma factors. In the ๏ฌ‚avour basis ๐œˆ ๐‘“ = ( ๐œˆ ๐ฟ๐‘’ , ๐œˆ ๐ฟ๐‘ฅ , ๐œˆ ๐‘…๐‘’ , ๐œˆ ๐‘…๐‘ฅ ) the evolution Hamiltonian can bedecomposed into two parts ๐ป ๐‘“ = [ curl ๐‘ฉ ] | | ๐ป ๐‘“ + [ curl ๐‘ฉ ] โŠฅ ๐ป ๐‘“ , (4)where ๐ป ๐‘“ = ยฉ ยซ h ๐‘Ÿ i ๐‘’๐‘’ + ๐‘“ ๐ด๐‘’๐‘’ h ๐‘Ÿ i ๐‘’๐‘ฅ + ๐‘“ ๐ด๐‘’๐‘ฅ h ๐‘Ÿ i ๐‘’๐‘ฅ + ๐‘“ ๐ด๐‘’๐‘ฅ h ๐‘Ÿ i ๐‘ฅ๐‘ฅ + ๐‘“ ๐ด๐‘ฅ๐‘ฅ h ๐‘Ÿ i ๐‘’๐‘’ โˆ’ ๐‘“ ๐ด๐‘’๐‘’ h ๐‘Ÿ i ๐‘’๐‘ฅ โˆ’ ๐‘“ ๐ด๐‘’๐‘ฅ h ๐‘Ÿ i ๐‘’๐‘ฅ โˆ’ ๐‘“ ๐ด๐‘’๐‘ฅ h ๐‘Ÿ i ๐‘ฅ๐‘ฅ โˆ’ ๐‘“ ๐ด๐‘ฅ๐‘ฅ ยชยฎยฎยฎยฎยฎยฌ , (5)2 strophysical neutrino oscillations accounting for neutrino charge radii Konstantin Stankevich ๐ป ๐‘“ = ยฉ ยซ (cid:16) h ๐‘Ÿ i ๐›พ (cid:17) ๐‘’๐‘’ + (cid:16) ๐‘“ ๐ด ๐›พ (cid:17) ๐‘’๐‘’ (cid:16) h ๐‘Ÿ i ๐›พ (cid:17) ๐‘’๐‘ฅ + (cid:16) ๐‘“ ๐ด ๐›พ (cid:17) ๐‘’๐‘ฅ (cid:16) h ๐‘Ÿ i ๐›พ (cid:17) ๐‘’๐œ‡ + (cid:16) ๐‘“ ๐ด ๐›พ (cid:17) ๐‘’๐œ‡ (cid:16) h ๐‘Ÿ i ๐›พ (cid:17) ๐‘ฅ๐‘ฅ + (cid:16) ๐‘“ ๐ด ๐›พ (cid:17) ๐‘ฅ๐‘ฅ (cid:16) ๐‘“ ๐ด ๐›พ (cid:17) ๐‘’๐‘’ โˆ’ (cid:16) h ๐‘Ÿ i ๐›พ (cid:17) ๐‘’๐‘’ (cid:16) ๐‘“ ๐ด ๐›พ (cid:17) ๐‘’๐‘ฅ โˆ’ (cid:16) h ๐‘Ÿ i ๐›พ (cid:17) ๐‘’๐‘ฅ (cid:16) ๐‘“ ๐ด ๐›พ (cid:17) ๐‘’๐‘ฅ โˆ’ (cid:16) h ๐‘Ÿ i ๐›พ (cid:17) ๐‘’๐‘ฅ (cid:16) ๐‘“ ๐ด ๐›พ (cid:17) ๐‘ฅ๐‘ฅ โˆ’ (cid:16) h ๐‘Ÿ i ๐›พ (cid:17) ๐‘ฅ๐‘ฅ ยชยฎยฎยฎยฎยฎยฎยฎยฎยฌ . (6)The form factors in the ๏ฌ‚avour basis are de๏ฌned as h ๐‘Ÿ i ๐‘’๐‘’ = h ๐‘Ÿ i cos ๐œƒ + h ๐‘Ÿ i sin ๐œƒ + h ๐‘Ÿ i sin 2 ๐œƒ, ๐‘“ ๐ด๐‘’๐‘’ = ๐‘“ ๐ด cos ๐œƒ + ๐‘“ ๐ด sin ๐œƒ + ๐‘“ ๐ด sin 2 ๐œƒ, h ๐‘Ÿ i ๐‘ฅ๐‘ฅ = h ๐‘Ÿ i sin ๐œƒ + h ๐‘Ÿ i cos ๐œƒ โˆ’ h ๐‘Ÿ i sin 2 ๐œƒ, ๐‘“ ๐ด๐‘ฅ๐‘ฅ = ๐‘“ ๐ด sin ๐œƒ + ๐‘“ ๐ด cos ๐œƒ โˆ’ ๐‘“ ๐ด sin 2 ๐œƒ, h ๐‘Ÿ i ๐‘’๐‘ฅ = h ๐‘Ÿ i cos 2 ๐œƒ + (cid:16) h ๐‘Ÿ i โˆ’ h ๐‘Ÿ i (cid:17) sin 2 ๐œƒ, ๐‘“ ๐ด๐‘’๐‘ฅ = ๐‘“ ๐ด cos 2 ๐œƒ + (cid:16) ๐‘“ ๐ด โˆ’ ๐‘“ ๐ด (cid:17) sin 2 ๐œƒ, (7)and (cid:18) ๐‘“ ๐ด ๐›พ (cid:19) ๐‘’๐‘’ = ๐‘“ ๐ด ๐›พ cos ๐œƒ + ๐‘“ ๐ด ๐›พ sin ๐œƒ + ๐‘“ ๐ด ๐›พ sin 2 ๐œƒ, (cid:18) h ๐‘Ÿ i ๐›พ (cid:19) ๐‘’๐‘’ = หœ ๐›พ โˆ’ h ๐‘Ÿ i ๐œƒ, (cid:18) ๐‘“ ๐ด ๐›พ (cid:19) ๐‘ฅ๐‘ฅ = ๐‘“ ๐ด ๐›พ sin ๐œƒ + ๐‘“ ๐ด ๐›พ cos ๐œƒ โˆ’ ๐‘“ ๐ด ๐›พ sin 2 ๐œƒ, (cid:18) h ๐‘Ÿ i ๐›พ (cid:19) ๐‘ฅ๐‘ฅ = โˆ’ หœ ๐›พ โˆ’ h ๐‘Ÿ i ๐œƒ, (cid:18) ๐‘“ ๐ด ๐›พ (cid:19) ๐‘’๐‘ฅ = ๐‘“ ๐ด ๐›พ cos 2 ๐œƒ + ๐‘“ ๐ด ๐›พ โˆ’ ๐‘“ ๐ด ๐›พ ! sin 2 ๐œƒ, (cid:18) h ๐‘Ÿ i ๐›พ (cid:19) ๐‘’๐‘ฅ = หœ ๐›พ โˆ’ h ๐‘Ÿ i ๐œƒ. (8)The obtained evolution Hamiltonian can be used for the analysis of the ๏ฌ‚avour, spin and spin-๏ฌ‚avouroscillations and corresponding resonances due to the neutrino electromagnetic interactions with theexternal magnetic ๏ฌeld engendered by neutrino charge radii and anapole moment. This work wassupported by the Russian Foundation for Basic Research under Grant No. 20-52-53022-GFEN-a.The work of KS was also supported by the Russian Foundation for Basic Research under Grant No.20-32-90107. References [1] C. Giunti and A. Studenikin, Rev. Mod. Phys. (2015), 531.[2] A. de Gouvea and S. Shalgar, JCAP (2012), 027.[3] A. de Gouvea and S. Shalgar, JCAP (2013), 018.[4] S. Abbar, Phys. Rev. D (2020) no.10, 103032.[5] R. Fabbricatore, A. Grigoriev and A. Studenikin, J. Phys. Conf. Ser. (2016) no.6, 062058[6] P. Pustoshny and A. Studenikin, Phys. Rev. D98

Related Researches

A geometrical approach to causality in multi-loop amplitudes
by German F. R. Sborlini
Dirac Neutrino Mass Matrix and its Link to Freeze-in Dark Matter
by Ernest Ma
Constraints on electromagnetic form factors of sub-GeV dark matter from the Cosmic Microwave Background anisotropy
by Gaetano Lambiase
Global Searches for New Physics with Top Quarks
by Susanne Westhoff
Infrared facets of the three-gluon vertex
by A. C. Aguilar
Simulating collider physics on quantum computers using effective field theories
by Christian W. Bauer
Explaining the MiniBooNE Anomalous Excess via Leptophilic ALP-Sterile Neutrino Coupling
by Chia-Hung Vincent Chang
Top-pair production via gluon fusion in the Standard Model Effective Field Theory
by Christoph Mรผller
Physical limits in the Color Dipole Model Bounds
by G.R.Boroun
Loop-tree duality from vertices and edges
by William J. Torres Bobadilla
Collective neutrino oscillations accounting for neutrino quantum decoherence
by Konstantin Stankevich
Exploring the new physics phases in 3+1 scenario in neutrino oscillation experiments
by Nishat Fiza
A W ยฑ polarization analyzer from Deep Neural Networks
by Taegyun Kim
Exact accidental U(1) symmetries for the axion
by Luc Darmรฉ
Radiative Decays of Charged Leptons in the Seesaw Effective Field Theory with One-loop Matching
by Di Zhang
Leptogenesis in an extended seesaw model with U(1 ) B?๏ฟฝL symmetry
by Ujjal Kumar Dey
On the interference of ggH and c c ยฏ H Higgs production mechanisms and the determination of charm Yukawa coupling at the LHC
by Wojciech Bizon
Charms of Strongly Interacting Conformal Gauge Mediation
by Gongjun Choi
Leptonic CP and Flavor Violations in SUSY GUT with Right-handed Neutrinos
by Kaigo Hirao
Sensitivity of indirect detection of Neutralino dark matter by Sommerfeld enhancement mechanism
by Mikuru Nagayama
Solving the Hubble tension without spoiling Big Bang Nucleosynthesis
by Guo-yuan Huang
Explicit Perturbations to the Stabilizer ?=i of Modular A ??5 Symmetry and Leptonic CP Violation
by Xin Wang
Heavy QCD Axion in b?๏ฟฝs transition: Enhanced Limits and Projections
by Sabyasachi Chakraborty
Testing new-physics models with global comparisons to collider measurements: the Contur toolkit
by A. Buckley
An improved light-cone harmonic oscillator model for the pionic leading-twist distribution amplitude
by Tao Zhong

  • «
  • 1
  • 2
  • 3
  • 4
  • »
Submitted on 9 Feb 2021 Updated

arXiv.org Original Source
INSPIRE HEP
NASA ADS
Google Scholar
Semantic Scholar
How Researchain Works
Researchain Logo
Decentralizing Knowledge