Featured Researches

Space Physics

Enceladus and Titan: Emerging Worlds of the Solar System (ESA Voyage 2050 White Paper)

Some of the major discoveries of the recent Cassini-Huygens mission have put Titan and Enceladus firmly on the Solar System map. The mission has revolutionised our view of Solar System satellites, arguably matching their scientific importance with that of their planet. While Cassini-Huygens has made big surprises in revealing Titan's organically rich environment and Enceladus' cryovolcanism, the mission's success naturally leads us to further probe these findings. We advocate the acknowledgement of Titan and Enceladus science as highly relevant to ESA's long-term roadmap, as logical follow-on to Cassini-Huygens. In this white paper, we will outline important science questions regarding these satellites and identify the pertinent science themes we recommend ESA cover during the Voyage 2050 planning cycle. Addressing these science themes would make major advancements to the present knowledge we have about the Solar System, its formation, evolution and likelihood that other habitable environments exist outside the Earth's biosphere.

Read more
Space Physics

End to End Satellite Servicing and Space Debris Management

There is growing demand for satellite swarms and constellations for global positioning, remote sensing and relay communication in higher LEO orbits. This will result in many obsolete, damaged and abandoned satellites that will remain on-orbit beyond 25 years. These abandoned satellites and space debris maybe economically valuable orbital real-estate and resources that can be reused, repaired or upgraded for future use. Space traffic management is critical to repair damaged satellites, divert satellites into warehouse orbits and effectively de-orbit satellites and space debris that are beyond repair and salvage. Current methods for on-orbit capture, servicing and repair require a large service satellite. However, by accessing abandoned satellites and space debris, there is an inherent heightened risk of damage to a servicing spacecraft. Sending multiple small-robots with each robot specialized in a specific task is a credible alternative, as the system is simple and cost-effective and where loss of one or more robots does not end the mission. In this work, we outline an end to end multirobot system to capture damaged and abandoned spacecraft for salvaging, repair and for de-orbiting. We analyze the feasibility of sending multiple, decentralized robots that can work cooperatively to perform capture of the target satellite as a first step, followed by crawling onto damage satellites to perform detailed mapping. After obtaining a detailed map of the satellite, the robots will proceed to either repair and replace or dismantle components for salvage operations. Finally, the remaining components will be packaged with a de-orbit device for accelerated de-orbit.

Read more
Space Physics

Energetic Particle Increases Associated with Stream Interaction Regions

The Parker Solar Probe was launched on 2018 August 12 and completed its second orbit on 2019 June 19 with perihelion of 35.7 solar radii. During this time, the Energetic particle Instrument-Hi (EPI-Hi, one of the two energetic particle instruments comprising the Integrated Science Investigation of the Sun, ISOIS) measured seven proton intensity increases associated with stream interaction regions (SIRs), two of which appear to be occurring in the same region corotating with the Sun. The events are relatively weak, with observed proton spectra extending to only a few MeV and lasting for a few days. The proton spectra are best characterized by power laws with indices ranging from -4.3 to -6.5, generally softer than events associated with SIRs observed at 1 au and beyond. Helium spectra were also obtained with similar indices, allowing He/H abundance ratios to be calculated for each event. We find values of 0.016-0.031, which are consistent with ratios obtained previously for corotating interaction region events with fast solar wind < 600 km s-1. Using the observed solar wind data combined with solar wind simulations, we study the solar wind structures associated with these events and identify additional spacecraft near 1 au appropriately positioned to observe the same structures after some corotation. Examination of the energetic particle observations from these spacecraft yields two events that may correspond to the energetic particle increases seen by EPI-Hi earlier.

Read more
Space Physics

Energetic Particle Observations from Parker Solar Probe using Combined Energy Spectra from the IS ⊙ IS Instrument Suite

The Integrated Science Investigations of the Sun (IS ⊙ IS) instrument suite includes two Energetic Particle instruments: EPI-Hi, designed to measure ions from ~1-200 MeV/nuc, and EPI-Lo, designed to measure ions from ~20 keV/nuc to ~15 MeV/nuc. We present an analysis of eight energetic proton events observed across the energy range of both instruments during PSP's first two orbits in order to examine their combined energy spectra. Background corrections are applied to help resolve spectral breaks between the two instruments and are shown to be effective. In doing so we demonstrate that, even in the early stages of calibration, IS ⊙ IS is capable of producing reliable spectral observations across broad energy ranges. In addition to making groundbreaking measurements very near the Sun, IS ⊙ IS also characterizes energetic particle populations over a range of heliocentric distances inside 1 au. During the first two orbits, IS ⊙ IS observed energetic particle events from a single corotating interaction region (CIR) at three different distances from the Sun. The events are separated by two Carrington rotations and just 0.11 au in distance, however the relationship shown between proton intensities and proximity of the spacecraft to the source region shows evidence of the importance of transport effects on observations of energetic particles from CIRs. Future IS ⊙ IS observations of similar events over larger distances will help disentangle the effects of CIR-related acceleration and transport. We apply similar spectral analyses to the remaining five events, including four that are likely related to stream interaction regions (SIRs) and one solar energetic particle (SEP) event.

Read more
Space Physics

Energy Supply for Heating the Slow Solar Wind Observed by Parker Solar Probe between 0.17 and 0.7 au

Energy supply sources for the heating process in the slow solar wind remain unknown. The Parker Solar Probe (PSP) mission provides a good opportunity to study this issue. Recently, PSP observations have found that the slow solar wind experiences stronger heating inside 0.24 au. Here for the first time we measure in the slow solar wind the radial gradient of the low-frequency breaks on the magnetic trace power spectra and evaluate the associated energy supply rate. We find that the energy supply rate is consistent with the observed perpendicular heating rate calculated based on the gradient of the magnetic moment. Based on this finding, one could explain why the slow solar wind is strongly heated inside 0.25 au but expands nearly adiabatically outside 0.25 au. This finding supports the concept that the energy added from the energy-containing range is transferred by an energy cascade process to the dissipation range, and then dissipates to heat the slow solar wind. The related issues for further study are discussed.

Read more
Space Physics

Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe

Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is ∼ 10 3 Jk g −1 s −1 , an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe (PSP), even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in-situ observations. Using the Politano-Pouquet third-order law and the von Kármán decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance R ranging from 54 R ⊙ (0.25 au) to 36 R ⊙ (0.17 au). The energy transfer rate obtained near the first perihelion is about 100 times higher than the average value at 1 au. This dramatic increase in the heating rate is unprecedented in previous solar wind observations, including those from Helios, and the values are close to those obtained in the shocked plasma inside the terrestrial magnetosheath.

Read more
Space Physics

Enhanced Kinetic Impactor for Deflecting Large Potentially Hazardous Asteroids via Maneuvering Space Rocks

Asteroid impacts pose a major threat to all life on Earth. The age of the dinosaurs was abruptly ended by a 10-km-diameter asteroid. Currently, a nuclear device is the only means of deflecting large Potentially Hazardous Asteroids (PHAs) away from an Earth-impacting trajectory. The Enhanced Kinetic Impactor (EKI) concept is proposed to deflect large PHAs via maneuvering space rocks. First, an unmanned spacecraft is launched to rendezvous with an intermediate Near-Earth Asteroid (NEA). Then, more than one hundred tons of rocks are collected from the NEA as the EKI. The NEA can also be captured as the EKI if the NEA is very small. Finally, the EKI is maneuvered to impact the PHA at a high speed, resulting in a significant deflection of the PHA. For example, to deflect Apophis, as much as 200 t of rocks could be collected from a NEA as the EKI based on existing engineering capabilities. The EKI can produce a velocity increment (delta-v) of 39.81 mm/s in Apophis, thereby increasing the minimum geocentric distance during the close encounter in 2029 by 1,866.93 km. This mission can be completed in 3.96 years with a propellant cost of 2.98 t. Compared with a classic kinetic impactor, the deflection distance can be increased one order of magnitude. The EKI concept breaks through the limitation of the ground-based launch capability, which can significantly increase the mass of the impactor. We anticipate that our research will be a starting point for efficient planetary defense against large PHAs.

Read more
Space Physics

Enhanced low-flux sensitivity (ELFS) effect of neutron-induced displacement damage in bipolar devices: physical mechanism and parametric model

Similar to the enhanced low-dose-rate sensitivity (ELDRS) effect of ionization damage, an enhanced low-flux senstivity (ELFS) effect has been reported in ions/neutron irradiation on n-type silicon or PNP transistors. However, the existing mechanism and simulation dominated by the diffusion dynamics give much higher transition flux than the experimental observations. In this work, we develop a new model based on the annealing of defect clusters for the ELFS effect. Simulations considering Si-interstitial-mediated inter-cluster interactions during their annealing processes successfully reproduce the ELFS effect. The ratio of Si interstitials captured by defect clusters to those dissipating off on the sample edges or re-merging into the bulk is found as the key parameter dominating the enhancement factor (EF) of the ELFS effect. We also establish a compact parametric model based on the mechanism, which is found to provide a good quantitative description of the experimental results. The model predicts the existence of nonsensitive regions at sufficiently low and high fluxes as well as a non-trivial fluence and temperature dependence of the enhancement factor.

Read more
Space Physics

Ensemble Estimation of Network Parameters: A Tool to Improve the Real-time Estimation of GICs in the South African Power Network

It has long been known that large grounded conducting networks on the surface of Earth are affected by solar activity and geomagnetic storms. Power networks are such extensive grounded conductors and are susceptible to geomagnetically induced currents (GICs). GICs at any specific node in a power network are assumed to be linearly related to the horizontal vector components of an induced plane-wave geoelectric field by a pair of network parameters. These network parameters are not easily measured in the network, but may be estimated empirically. In this work, we present a new approach of using an ensemble of network parameters estimates. The ensembles include a huge number of parameter pair estimates calculated from simultaneously solving pairs of time instances of the governing GIC equation. Each individual estimate is not the true state of the system, but a possible state. Taking the ensemble as a whole though gives the most probable parameter estimate. The most probable parameter estimate for both network parameters, as defined by their respective ensembles, is used directly in the modelling of GICs. The ensembles themselves however allow for further analysis into the nature of GICs. An improvement is seen when comparing the out-of-sample performance of the ensemble estimates with previous GIC modelling in the South African power network during the Halloween Storm of 2003. For the first time, it is shown that errors in the GIC modelling chain are absorbed into the network parameter estimates. Using a range of estimates from the ensemble, a GIC prediction band is produced. This band corresponds to an error estimate for predicted GIC. Furthermore, it has been explicitly shown that estimated network parameters vary with GIC magnitude during an event. This behaviour is then used to refine the parameter estimation further and allow for real time dynamic network parameter estimation.

Read more
Space Physics

Ensemble Forecasting of Major Solar Flares: Methods for Combining Models

One essential component of operational space weather forecasting is the prediction of solar flares. With a multitude of flare forecasting methods now available online it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Space weather researchers are increasingly looking towards methods used by the terrestrial weather community to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASAP, ASSA, MAG4, MOSWOC, NOAA, and MCSTAT). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. It is found that most ensembles achieve a better skill metric (between 5\% and 15\%) than any of the members alone. Moreover, over 90\% of ensembles perform better (as measured by forecast attributes) than a simple equal-weights average. Finally, ensemble uncertainties are highly dependent on the internal metric being optimized and they are estimated to be less than 20\% for probabilities greater than 0.2. This simple multi-model, linear ensemble technique can provide operational space weather centres with the basis for constructing a versatile ensemble forecasting system -- an improved starting point to their forecasts that can be tailored to different end-user needs.

Read more

Ready to get started?

Join us today