Featured Researches

Computational Finance

A Hedged Monte Carlo Approach to Real Option Pricing

In this work we are concerned with valuing optionalities associated to invest or to delay investment in a project when the available information provided to the manager comes from simulated data of cash flows under historical (or subjective) measure in a possibly incomplete market. Our approach is suitable also to incorporating subjective views from management or market experts and to stochastic investment costs. It is based on the Hedged Monte Carlo strategy proposed by Potters et al (2001) where options are priced simultaneously with the determination of the corresponding hedging. The approach is particularly well-suited to the evaluation of commodity related projects whereby the availability of pricing formulae is very rare, the scenario simulations are usually available only in the historical measure, and the cash flows can be highly nonlinear functions of the prices.

Read more
Computational Finance

A High Order Method for Pricing of Financial Derivatives using Radial Basis Function generated Finite Differences

In this paper, we consider the numerical pricing of financial derivatives using Radial Basis Function generated Finite Differences in space. Such discretization methods have the advantage of not requiring Cartesian grids. Instead, the nodes can be placed with higher density in areas where there is a need for higher accuracy. Still, the discretization matrix is fairly sparse. As a model problem, we consider the pricing of European options in 2D. Since such options have a discontinuity in the first derivative of the payoff function which prohibits high order convergence, we smooth this function using an established technique for Cartesian grids. Numerical experiments show that we acquire a fourth order scheme in space, both for the uniform and the nonuniform node layouts that we use. The high order method with the nonuniform node layout achieves very high accuracy with relatively few nodes. This renders the potential for solving pricing problems in higher spatial dimensions since the computational memory and time demand become much smaller with this method compared to standard techniques.

Read more
Computational Finance

A Language for Large-Scale Collaboration in Economics: A Streamlined Computational Representation of Financial Models

This paper introduces Sigma, a domain-specific computational representation for collaboration in large-scale for the field of economics. A computational representation is not a programming language or a software platform. A computational representation is a domain-specific representation system based on three specific elements: facets, contributions, and constraints of data. Facets are definable aspects that make up a subject or an object. Contributions are shareable and formal evidence, carrying specific properties, and produced as a result of a crowd-based scientific investigation. Constraints of data are restrictions defining domain-specific rules of association between entities and relationships. A computational representation serves as a layer of abstraction that is required in order to define domain-specific concepts in computers, in a way these concepts can be shared in a crowd for the purposes of a controlled scientific investigation in large-scale by crowds. Facets, contributions, and constraints of data are defined for any domain of knowledge by the application of a generic set of inputs, procedural steps, and products called a representational process. The application of this generic process to our domain of knowledge, the field of economics, produces Sigma. Sigma is described in this paper in terms of its three elements: facets (streaming, reactives, distribution, and simulation), contributions (financial models, processors, and endpoints), and constraints of data (configuration, execution, and simulation meta-model). Each element of the generic representational process and the Sigma computational representation is described and formalized in details.

Read more
Computational Finance

A Method of Reducing Dimension of Space Variables in Multi-dimensional Black-Scholes Equations

We study a method of reducing space dimension in multi-dimensional Black-Scholes partial differential equations as well as in multi-dimensional parabolic equations. We prove that a multiplicative transformation of space variables in the Black-Scholes partial differential equation reserves the form of Black-Scholes partial differential equation and reduces the space dimension. We show that this transformation can reduce the number of sources of risks by two or more in some cases by giving remarks and several examples of financial pricing problems. We also present that the invariance of the form of Black-Scholes equations is based on the invariance of the form of parabolic equation under a change of variables with the linear combination of variables.

Read more
Computational Finance

A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities

Managing and hedging the risks associated with Variable Annuity (VA) products require intraday valuation of key risk metrics for these products. The complex structure of VA products and computational complexity of their accurate evaluation have compelled insurance companies to adopt Monte Carlo (MC) simulations to value their large portfolios of VA products. Because the MC simulations are computationally demanding, especially for intraday valuations, insurance companies need more efficient valuation techniques. Recently, a framework based on traditional spatial interpolation techniques has been proposed that can significantly decrease the computational complexity of MC simulation (Gan and Lin, 2015). However, traditional interpolation techniques require the definition of a distance function that can significantly impact their accuracy. Moreover, none of the traditional spatial interpolation techniques provide all of the key properties of accuracy, efficiency, and granularity (Hejazi et al., 2015). In this paper, we present a neural network approach for the spatial interpolation framework that affords an efficient way to find an effective distance function. The proposed approach is accurate, efficient, and provides an accurate granular view of the input portfolio. Our numerical experiments illustrate the superiority of the performance of the proposed neural network approach compared to the traditional spatial interpolation schemes.

Read more
Computational Finance

A Numerical Method for Pricing Discrete Double Barrier Option by Lagrange Interpolation on Jacobi Node

In this paper, a rapid and high accurate numerical method for pricing discrete single and double barrier knock-out call options is presented. According to the well-known Black-Scholes framework, the price of option in each monitoring date could be calculate by computing a recursive integral formula upon the heat equation solution. We have approximated these recursive solutions with the aim of Lagrange interpolation on Jacobi polynomials node. After that, an operational matrix, that makes our computation significantly fast, has been driven. The most important feature of this method is that its CPU time dose not increase when the number of monitoring dates increases. The numerical results confirm the accuracy and efficiency of the presented numerical algorithm.

Read more
Computational Finance

A Numerical Method for Pricing Discrete Double Barrier Option by Legendre Multiwavelet

In this Article, a fast numerical numerical algorithm for pricing discrete double barrier option is presented. According to Black-Scholes model, the price of option in each monitoring date can be evaluated by a recursive formula upon the heat equation solution. These recursive solutions are approximated by using Legendre multiwavelets as orthonormal basis functions and expressed in operational matrix form. The most important feature of this method is that its CPU time is nearly invariant when monitoring dates increase. Besides, the rate of convergence of presented algorithm was obtained. The numerical results verify the validity and efficiency of the numerical method.

Read more
Computational Finance

A Polynomial Scheme of Asymptotic Expansion for Backward SDEs and Option pricing

A new asymptotic expansion scheme for backward SDEs (BSDEs) is proposed.The perturbation parameter is introduced just to scale the forward stochastic variables within a BSDE. In contrast to the standard small-diffusion asymptotic expansion method, the dynamics of variables given by the forward SDEs is treated exactly. Although it requires a special form of the quadratic covariation terms of the continuous part, it allows rather generic drift as well as jump components to exist. The resultant approximation is given by a polynomial function in terms of the unperturbed forward variables whose coefficients are uniquely specified by the solution of the recursive system of linear ODEs. Applications to a jump-extended Heston and lambda-SABR models for European contingent claims, as well as the utility-optimization problem in the presence of a terminal liability are discussed.

Read more
Computational Finance

A Probabilistic Approach to Nonparametric Local Volatility

The local volatility model is a widely used for pricing and hedging financial derivatives. While its main appeal is its capability of reproducing any given surface of observed option prices---it provides a perfect fit---the essential component is a latent function which can be uniquely determined only in the limit of infinite data. To (re)construct this function, numerous calibration methods have been suggested involving steps of interpolation and extrapolation, most often of parametric form and with point-estimate representations. We look at the calibration problem in a probabilistic framework with a nonparametric approach based on a Gaussian process prior. This immediately gives a way of encoding prior beliefs about the local volatility function and a hypothesis model which is highly flexible yet not prone to over-fitting. Besides providing a method for calibrating a (range of) point-estimate(s), we draw posterior inference from the distribution over local volatility. This leads to a better understanding of uncertainty associated with the calibration in particular, and with the model in general. Further, we infer dynamical properties of local volatility by augmenting the hypothesis space with a time dimension. Ideally, this provides predictive distributions not only locally, but also for entire surfaces forward in time. We apply our approach to S&P 500 market data.

Read more
Computational Finance

A Quantum algorithm for linear PDEs arising in Finance

We propose a hybrid quantum-classical algorithm, originated from quantum chemistry, to price European and Asian options in the Black-Scholes model. Our approach is based on the equivalence between the pricing partial differential equation and the Schrodinger equation in imaginary time. We devise a strategy to build a shallow quantum circuit approximation to this equation, only requiring few qubits. This constitutes a promising candidate for the application of Quantum Computing techniques (with large number of qubits affected by noise) in Quantitative Finance.

Read more

Ready to get started?

Join us today