Featured Researches

Computational Finance

A model-free backward and forward nonlinear PDEs for implied volatility

We derive a backward and forward nonlinear PDEs that govern the implied volatility of a contingent claim whenever the latter is well-defined. This would include at least any contingent claim written on a positive stock price whose payoff at a possibly random time is convex. We also discuss suitable initial and boundary conditions for those PDEs. Finally, we demonstrate how to solve them numerically by using an iterative finite-difference approach.

Read more
Computational Finance

A moment matching method for option pricing under stochastic interest rates

In this paper we present a simple, but new, approximation methodology for pricing a call option in a Black \& Scholes market characterized by stochastic interest rates. The method, based on a straightforward Gaussian moment matching technique applied to a conditional Black \& Scholes formula, is quite general and it applies to various models, whether affine or not. To check its accuracy and computational time, we implement it for the CIR interest rate model correlated with the underlying, using the Monte Carlo simulations as a benchmark. The method's performance turns out to be quite remarkable, even when compared with analogous results obtained by the affine approximation technique presented in Grzelak and Oosterlee (2011) and by the expansion formula introduced in Kim and Kunimoto (1999), as we show in the last section.

Read more
Computational Finance

A neural network model for solvency calculations in life insurance

Insurance companies make extensive use of Monte Carlo simulations in their capital and solvency models. To overcome the computational problems associated with Monte Carlo simulations, most large life insurance companies use proxy models such as replicating portfolios. In this paper, we present an example based on a variable annuity guarantee, showing the main challenges faced by practitioners in the construction of replicating portfolios: the feature engineering step and subsequent basis function selection problem. We describe how neural networks can be used as a proxy model and how to apply risk-neutral pricing on a neural network to integrate such a model into a market risk framework. The proposed model naturally solves the feature engineering and feature selection problems of replicating portfolios.

Read more
Computational Finance

A neural network-based framework for financial model calibration

A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately.

Read more
Computational Finance

A new approach for American option pricing: The Dynamic Chebyshev method

We introduce a new method to price American options based on Chebyshev interpolation. In each step of a dynamic programming time-stepping we approximate the value function with Chebyshev polynomials. The key advantage of this approach is that it allows to shift the model-dependent computations into an offline phase prior to the time-stepping. In the offline part a family of generalised (conditional) moments is computed by an appropriate numerical technique such as a Monte Carlo, PDE or Fourier transform based method. Thanks to this methodological flexibility the approach applies to a large variety of models. Online, the backward induction is solved on a discrete Chebyshev grid, and no (conditional) expectations need to be computed. For each time step the method delivers a closed form approximation of the price function along with the options' delta and gamma. Moreover, the same family of (conditional) moments yield multiple outputs including the option prices for different strikes, maturities and different payoff profiles. We provide a theoretical error analysis and find conditions that imply explicit error bounds for a variety of stock price models. Numerical experiments confirm the fast convergence of prices and sensitivities. An empirical investigation of accuracy and runtime also shows an efficiency gain compared with the least-square Monte-Carlo method introduced by Longstaff and Schwartz (2001).

Read more
Computational Finance

A numerical scheme for the quantile hedging problem

We consider the numerical approximation of the quantile hedging price in a non-linear market. In a Markovian framework, we propose a numerical method based on a Piecewise Constant Policy Timestepping (PCPT) scheme coupled with a monotone finite difference approximation. We prove the convergence of our algorithm combining BSDE arguments with the Barles & Jakobsen and Barles & Souganidis approaches for non-linear equations. In a numerical section, we illustrate the efficiency of our scheme by considering a financial example in a market with imperfections.

Read more
Computational Finance

A particle model for the herding phenomena induced by dynamic market signals

In this paper, we study the herding phenomena in financial markets arising from the combined effect of (1) non-coordinated collective interactions between the market players and (2) concurrent reactions of market players to dynamic market signals. By interpreting the expected rate of return of an asset and the favorability on that asset as position and velocity in phase space, we construct an agent-based particle model for herding behavior in finance. We then define two types of herding functionals using this model, and show that they satisfy a Gronwall type estimate and a LaSalle type invariance property respectively, leading to the herding behavior of the market players. Various numerical tests are presented to numerically verify these results.

Read more
Computational Finance

A path integral based model for stocks and order dynamics

We introduce a model for the short-term dynamics of financial assets based on an application to finance of quantum gauge theory, developing ideas of Ilinski. We present a numerical algorithm for the computation of the probability distribution of prices and compare the results with APPLE stocks prices and the S&P500 index.

Read more
Computational Finance

A perspective on correlation-based financial networks and entropy measures

In this brief review, we critically examine the recent work done on correlation-based networks in financial systems. The structure of empirical correlation matrices constructed from the financial market data changes as the individual stock prices fluctuate with time, showing interesting evolutionary patterns, especially during critical events such as market crashes, bubbles, etc. We show that the study of correlation-based networks and their evolution with time is useful for extracting important information of the underlying market dynamics. We, also, present our perspective on the use of recently developed entropy measures such as structural entropy and eigen-entropy for continuous monitoring of correlation-based networks.

Read more
Computational Finance

A re-examination of real interest parity in CEECs using old and new generations of panel unit root tests

This study applies old and new generations of panel unit root tests to test the validity of long-run real interest rate parity (RIP) hypothesis for ten Central and Eastern European Countries (CEECs) with respect to the Euro area and an average of the CEECs' real interest rates, respectively. When the panel unit root tests are carried out with respect to the Euro area rate, we confirm the results of previous studies which support the RIP hypothesis. Nevertheless, when the test is performed using the average of the CEECs' rate, our results are mitigated, revealing that the hypothesis of CEECs' interest rates convergence cannot be taken for granted. From a robustness analysis perspective, our findings indicate that the RIP hypothesis for CEECs should be considered with cautions, being sensitive to the benchmark.

Read more

Ready to get started?

Join us today