Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. A. Stark is active.

Publication


Featured researches published by A. A. Stark.


Astrophysical Journal Supplement Series | 1992

The bell laboratories H I survey

A. A. Stark; Charles F. Gammie; Robert W. Wilson; John Bally; Richard A. Linke; Carl Heiles; Mark Hurwitz

We present a galactic survey which to date consists of 73,000 positions covering −5° < l < 122°, −1° < b < 1° , observed in the J=1 → 0 line of 13CO to an rms noise level of 0.15 K in 0.68 km s−1 channels, using the 7 m antenna at Crawford Hill. It is shown that the internal velocity dispersions of molecular clouds tend to vary inversely with galactocentric radius.


The Astrophysical Journal | 2011

A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope

R. Keisler; C. L. Reichardt; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer; M. Millea

We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 square degrees of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < ‘ < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We nd that the SPT and WMAP data are consistent with each other and, when combined, are well t by a spatially at, CDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar uctuations is ns = 0:9663 0:0112. We detect, at 5 signicance, the eect of gravitational lensing on the CMB power spectrum, and nd its amplitude to be consistent with the CDM cosmological model. We explore a number of extensions beyond the CDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensorto-scalar ratio to be r < 0:21 (95% CL) and constrain the running of the scalar spectral index to be dns=d lnk = 0:024 0:013. We strongly detect the eects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 , while a model without neutrinos is rejected at 7.5 . The primordial helium abundance is measured to be Yp = 0:296 0:030, and the eective number of relativistic species is measured to be Ne = 3:85 0:62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0:9668 0:0093, r < 0:17 (95% CL), and Ne = 3:86 0:42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high eective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters. Subject headings: cosmology { cosmology:cosmic microwave background { cosmology: observations { large-scale structure of universe


The Astrophysical Journal | 1987

Filamentary structure in the Orion molecular cloud

John Bally; A. A. Stark; Robert W. Wilson; William D. Langer

A large-scale (C-13)O map (containing 33,000 spectra on a 1-arcmin grid) is presented for the giant molecular cloud located in the southern part of Ori which contains the Ori Nebula, NGC 1977, and the L1641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. The northern portion of the cloud is compressed, dynamically relaxed, and supports massive star formation. In contrast, the southern part of the Ori A cloud is diffuse, exhibits chaotic spatial and velocity structure, and supports only intermediate- to low-mass star formation. This morphology may be the consequence of the formation and evolution of the Ori OB I association centered north of the molecular cloud. The entire cloud, in addition to the 5000-solar-mass filament containing both OMC-1 and OMC-2, exhibits a north-south velocity gradient. Implications of the observed cloud morphology for theories of molecular cloud evolution are discussed. 14 references.


The Astrophysical Journal | 2014

Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg2 SPT-SZ survey

Z. Hou; C. L. Reichardt; K. Story; B. Follin; R. Keisler; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; R. de Putter; M. Dobbs; Scott Dodelson; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van

We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of H_0 and baryon acoustic oscillation (BAO). We check for consistency within ΛCDM between these data sets, and find some tension. The CMB alone gives weak support to physics beyond ΛCDM, due to a slight trend relative to ΛCDM of decreasing power toward smaller angular scales. While it may be due to statistical fluctuation, this trend could also be explained by several extensions. We consider running of the primordial spectral index (dn_s /d ln k), as well as two extensions that modify the damping tail power (the primordial helium abundance Y_p and the effective number of neutrino species N_(eff)) and one that modifies the large-scale power due to the integrated Sachs-Wolfe effect (the sum of neutrino masses ∑m_ν). These extensions have similar observational consequences and are partially degenerate when considered simultaneously. Of the six one-parameter extensions considered, we find CMB to have the largest preference for dn_s/d ln k with –0.046 0 from CMB+BAO+H_0 + SPT_(CL). The median value is (0.32 ± 0.11) eV, a factor of six above the lower bound set by neutrino oscillation observations. All data sets except H_0 show some preference for massive neutrinos; data combinations including H_0 favor nonzero masses only if BAO data are also included. We also constrain the two-parameter extensions N_(eff) + ∑m_ν and N_(eff) + Y_p to explore constraints on additional light species and big bang nucleosynthesis, respectively.


The Astrophysical Journal | 1988

Galactic center molecular clouds. II. Distribution and kinematics

John Bally; A. A. Stark; Robert W. Wilson; C. Henkel

The distribution and kinematics of the molecular gas near the Galactic center is discussed based on uniformly sampled molecular mapping data presented in a previous paper. It is found that the molecular gas in the inner 900 pc of the Galaxy is asymmetric in both space and velocity. Some of the gas lies out of the Galactic plane and must move in inclined orbits, but the bulk of the gas is in a thin layer in the Galactic plane. The gas near the Galactic center is highly turbulent. Internal velocity dispersions range from 15 to 50 km/s FWHM, a factor of 3-10 times higher than molecular clouds in the disk. Strong deviations from circular motion and the morphology of isolated features such as the l = 3 deg clouds suggest that much of the gas moves in elongated orbits. A new model is proposed for explaining the origin and energy source for the continuum and line-emitting radio filaments found near the Galactic center. 39 references.


The Astrophysical Journal | 2013

ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

A. Weiß; C. De Breuck; D. P. Marrone; J. D. Vieira; James E. Aguirre; K. A. Aird; M. Aravena; M. L. N. Ashby; Matthew B. Bayliss; B. A. Benson; M. Béthermin; A. D. Biggs; L. E. Bleem; J. J. Bock; M. Bothwell; C. M. Bradford; M. Brodwin; J. E. Carlstrom; C. L. Chang; Sydney Chapman; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; Thomas P. Downes; C. D. Fassnacht; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; T. R. Greve

Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S_(1.4mm) > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz) 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.


Astrophysical Journal Supplement Series | 1987

Galactic center molecular clouds. I. Spatial and spatial-velocity maps

John Bally; A. A. Stark; Robert W. Wilson; C. Henkel

Maps showing the distribution of molecular gas in the Galactic center region are presented. The molecular transitions surveyed include: (C-13)O J = 1-0 over a region 10 deg in extent in l and 1.2 deg in extent in b, the CS J = 2-1 mapped over a 5 deg region between l = -1 deg and 3.7 deg and 0.8 deg in extent in b, the J = 1-0 (C-18)O, J(k, k-prime) = 5(05)-4(04) HNCO lines in the vicinity of Sgr A, and the J = 6-5 CH3CN emission lines at 110.38 GHz around Sgr A and Sgr B2. The (C-13)O and CS maps show that molecular emission is widespread in the inner 500 pc of the Galaxy, even in regions well away from Sgr A around Sgr B2. The other molecules trace the dense material near Sgr A and Sgr B2. 9 references.


Proceedings of SPIE | 2014

SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope

B. A. Benson; Peter A. R. Ade; Z. Ahmed; S. W. Allen; K. Arnold; J. E. Austermann; A. N. Bender; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; Jean-François Cliche; T. M. Crawford; A. Cukierman; T. de Haan; M. Dobbs; D. Dutcher; W. Everett; A. Gilbert; N. W. Halverson; D. Hanson; N. L. Harrington; K. Hattori; J. W. Henning; G. C. Hilton; Gilbert P. Holder; W. L. Holzapfel; K. D. Irwin; R. Keisler; L. Knox

We describe the design of a new polarization sensitive receiver, spt-3g, for the 10-meter South Pole Telescope (spt). The spt-3g receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, spt-pol. The sensitivity of the spt-3g receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through spt-3g data alone or in combination with bicep2/keck, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the spt-3g survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (des), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies


Nature | 2012

A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies

M. McDonald; Matthew B. Bayliss; B. A. Benson; Ryan J. Foley; J. Ruel; Peter W. Sullivan; Sylvain Veilleux; K. A. Aird; M. L. N. Ashby; Marshall W. Bautz; G. Bazin; L. E. Bleem; M. Brodwin; J. E. Carlstrom; C. L. Chang; H. M. Cho; Alejandro Clocchiatti; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; J. P. Dudley; E. Egami; W. Forman; Gordon Garmire; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson

In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster’s lifetime, leading to continuous ‘cooling flows’ of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these ‘cool-core’ clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 1045 erg s−1) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.


The Astrophysical Journal | 2010

SPT-CL J0546-5345: A Massive z > 1 Galaxy Cluster Selected Via the Sunyaev-Zel'dovich Effect with the South Pole Telescope

Mark Brodwin; J. Ruel; Peter A. R. Ade; K. A. Aird; K. Andersson; M. L. N. Ashby; Marshall W. Bautz; G. Bazin; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; J. P. Dudley; G. G. Fazio; Ryan J. Foley; W. Forman; Gordon Garmire; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson; F. W. High; G. P. Holder; W. L. Holzapfel; J. D. Hrubes

United States. National Aeronautics and Space Administration (Jet Propulsion Laboratory (U.S.))

Collaboration


Dive into the A. A. Stark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. W. Halverson

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

T. de Haan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. T. Crites

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge