A. Aadhi
Physical Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Aadhi.
Scientific Reports | 2016
M. V. Jabir; N. Apurv Chaitanya; A. Aadhi; G. K. Samanta
The “perfect” vortex is a new class of optical vortex beam having ring radius independent of its topological charge (order). One of the simplest techniques to generate such beams is the Fourier transformation of the Bessel-Gauss beams. The variation in ring radius of such vortices require Fourier lenses of different focal lengths and or complicated imaging setup. Here we report a novel experimental scheme to generate perfect vortex of any ring radius using a convex lens and an axicon. As a proof of principle, using a lens of focal length f = 200 mm, we have varied the radius of the vortex beam across 0.3–1.18 mm simply by adjusting the separation between the lens and axicon. This is also a simple scheme to measure the apex angle of an axicon with ease. Using such vortices we have studied non-collinear interaction of photons having orbital angular momentum (OAM) in spontaneous parametric down-conversion (SPDC) process and observed that the angular spectrum of the SPDC photons are independent of OAM of the pump photons rather depends on spatial profile of the pump beam. In the presence of spatial walk-off effect in nonlinear crystals, the SPDC photons have asymmetric angular spectrum with reducing asymmetry at increasing vortex radius.
Optics Express | 2014
G. K. Samanta; S. Chaitanya Kumar; A. Aadhi; M. Ebrahim-Zadeh
We report a compact tunable 240-MHz picosecond source for the ultraviolet based on intra-cavity frequency doubling of a signal-resonant MgO:sPPLT optical parametric oscillator (OPO), synchronously pumped at 532 nm in the green by the second harmonic of a mode-locked Yb-fiber laser at 80-MHz repetition rate. By deploying a 30-mm-long multi-grating MgO:sPPLT crystal for the OPO and a 5-mm-long BiB(3)O(6) crystal for internal doubling, we have generated tunable UV radiation across 317-340.5 nm, with up to 30 mW at 334.5 nm. The OPO also provides tunable visible signal in the red, across 634-681 nm, and mid-infrared idler radiation over 2429-3298 nm, with as maximum signal power of 800 mW at 642 nm. The signal pulses have a temporal duration of 12 ps at 665 nm and exhibit high spatial beam quality with Gaussian profile. The signal power is recorded to be naturally stable with a fluctuation of 1.4% rms over 14 hours, while UV power degradation has been observed and studied.
Optics Letters | 2015
A. Aadhi; M. V. Jabir; G. K. Samanta
We report on the development of a high-power, high-repetition-rate, fiber laser based source of ultrafast ultraviolet (UV) radiation. Using single-pass second-harmonic generation and subsequent sum-frequency generation (SFG) of an ultrafast ytterbium fiber at 1064 nm in 1.2 and 5 mm long bismuth triborate (BIBO) crystals, respectively, we have generated UV output power as high as 1.06 W at 355 nm with single-pass near-infrared-to-UV conversion efficiency of ∼22%. The source has output pulses of temporal and spectral widths of ∼576 fs and 1.6 nm, respectively, at 78 MHz repetition rate. For given crystals and laser parameters, we have experimentally verified that the optimum conversion efficiency of the SFG process requires interacting pump beams to have the same confocal parameters. We also present a systematic study on the power ratio of pump beams influencing the overall conversion of the UV radiation. The UV source has a peak-to-peak short-term power fluctuation of <2.2%, with a power drift of 0.76%/h associated to different loss mechanisms of the BIBO crystal at UV wavelengths. At tight focusing, the BIBO crystal has a broad angular acceptance bandwidth of (∼2 mrad·cm) for SFG of the femtosecond laser.
Optics Letters | 2015
N. Apurv Chaitanya; A. Aadhi; M. V. Jabir; G. K. Samanta
We report on frequency-doubling characteristics of high-power, ultrafast optical vortex beams in a nonlinear medium. Based on single-pass second-harmonic generation (SHG) of optical vortices in 1.2 mm long bismuth triborate (BIBO) crystal, we studied the effect of different parameters influencing the SHG process in generating high-power and higher-order vortices. We observed a decrease in SHG efficiency with the order, which can be attributed to the increase of the vortex beam area with order. Like a Gaussian beam, optical vortices show focusing-dependent conversion efficiency. However, under similar experimental conditions, the optimum focusing condition for optical vortices is reached at tighter focusing with orders. We observed higher angular acceptance bandwidth in the case of optical vortices than that of a Gaussian beam; however, there is no substantial change in angular acceptance bandwidth with vortex order. We also observed that in the frequency-doubling process, the topological charge has negligible or no effect in temporal and spectral properties of the beams. We have generated ultrafast vortices at 532 nm with power as much as 900 mW and order as high as 12. In addition, we have devised a novel scheme based on linear optical elements to double the order of any optical vortex at the same wavelength.
Optica | 2017
A. Aadhi; G. K. Samanta; S. Chaitanya Kumar; Majid Ebrahim-Zadeh
Controlled switching of orbital angular momentum (OAM) of light at practical powers over arbitrary wavelength regions can have important implications for future quantum and classical systems. Here we report on a single source of OAM beams based on an optical parametric oscillator (OPO) that can provide all such capabilities. We demonstrate active transfer of OAM modes of any order, |lp|, of pump to the signal and idler in an OPO, to produce |lp|+1 different OAM states by controlling the relative cavity losses of the resonated beams. As a proof-of-principle, we show that when pumping with the OAM states |lp|=1 and |lp|=2 for different relative losses of signal and idler, the OPO has two (|1,0⟩ and |0,1⟩) and three (|2,0⟩, |1,1⟩, and |0,2⟩) output states, respectively. Our findings show that using a suitable loss modulator, one can achieve rapid switching of the OAM mode in OPO output beams in time.
Scientific Reports | 2016
A. Aadhi; N. Apurv Chaitanya; M. V. Jabir; Pravin Vaity; R. P. Singh; G. K. Samanta
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).
Optics Express | 2013
G. K. Samanta; A. Aadhi; M. Ebrahim-Zadeh
We present theoretical and experimental study of a continuous-wave, two-crystal, singly-resonant optical parametric oscillator (T-SRO) comprising two identical 30-mm-long crystals of MgO:sPPLT in a four- mirror ring cavity and pumped with two separate pump beams in the green. The idler beam after each crystal is completely out-coupled, while the signal radiation is resonant inside the cavity. Solving the coupled amplitude equations under undepleted pump approximation, we calculate the maximum threshold reduction, parametric gain acceptance bandwidth and closest possible attainable wavelength separation in arbitrary dual-wavelength generation and compare with the experimental results. Although the T-SRO has two identical crystals, the acceptance bandwidth of the device is equal to that of a single-crystal SRO. Due to the division of pump power in two crystals, the T-SRO can handle higher total pump power while lowering crystal damage risk and thermal effects. We also experimentally verify the high power performance of such scheme, providing a total output power of 6.5 W for 16.2 W of green power at 532 nm. We verified coherent energy coupling between the intra-cavity resonant signal waves resulting Raman spectral lines. Based on the T-SRO scheme, we also report a new technique to measure the temperature acceptance bandwidth of the single-pass parametric amplifier across the OPO tuning range.
Optics Letters | 2015
A. Aadhi; N. Apurv Chaitanya; M. V. Jabir; R. P. Singh; G. K. Samanta
We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5 μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3 MHz and power >100 mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15 nm·cm, respectively.
Journal of The Optical Society of America A-optics Image Science and Vision | 2014
Salla Gangi Reddy; Shashi Prabhakar; A. Aadhi; Ashok Kumar; Megh Shah; R. P. Singh; R. Simon
We propose a new method for determining the Mueller matrix of an arbitrary optical element and verify it with three known optical elements. This method makes use of two universal SU(2) polarization gadgets to obtain the projection matrix directly from the experiment. It allows us to determine the Mueller matrix without precalibration of the setup, since the generated polarization states are fully determined by the azimuths of the wave plates. We calculate errors in determining the Mueller matrix and compare with other techniques.
Journal of Optics | 2016
Salla Gangi Reddy; Chithrabhanu P; Pravin Vaity; A. Aadhi; Shashi Prabhakar; R. P. Singh
We generate perfect optical vortex (POV) beams, whose intensity distribution is independent of the order, and scatter them through a rough surface. We show that the size of produced speckles is independent of the order of the POV and their Fourier transform gives the random non-diffracting fields. The invariant size of speckles over the free space propagation verifies their non-diffracting or non-diverging nature. The size of speckles can be easily controlled by changing the axicon parameter, used to generate the Bessel–Gauss beams whose Fourier transform provides the POV. These results may be useful in applications of POV for authentication in cryptography.