Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Archer is active.

Publication


Featured researches published by A. Archer.


The Astrophysical Journal | 2015

VERITAS DETECTION OF γ-RAY FLARING ACTIVITY FROM THE BL LAC OBJECT 1ES 1727+502 DURING BRIGHT MOONLIGHT OBSERVATIONS

S. Archambault; A. Archer; M. Beilicke; W. Benbow; R. Bird; J. Biteau; A. Bouvier; V. Bugaev; J. V. Cardenzana; M. Cerruti; X. Chen; L. Ciupik; M. P. Connolly; W. Cui; H. J. Dickinson; J. Dumm; J. D. Eisch; M. Errando; A. Falcone; Q. Feng; J. P. Finley; H. Fleischhack; P. Fortin; L. Fortson; A. Furniss; G. H. Gillanders; S. Griffin; S. T. Griffiths; J. Grube; G. Gyuk

During moonlit nights, observations with ground-based Cherenkov telescopes at very high energies (VHEs, GeV) are constrained since the photomultiplier tubes (PMTs) in the telescope camera are extremely sensitive to the background moonlight. Observations with the VERITAS telescopes in the standard configuration are performed only with a moon illumination less than 35% of full moon. Since 2012, the VERITAS collaboration has implemented a new observing mode under bright moonlight, by either reducing the voltage applied to the PMTs (reduced-high-voltage; RHV configuration), or by utilizing UV-transparent filters. While these operating modes result in lower sensitivity and increased energy thresholds, the extension of the available observing time is useful for monitoring variable sources such as blazars and sources requiring spectral measurements at the highest energies. In this paper we report the detection of γ-ray flaring activity from the BL Lac object 1ES 1727+502 during RHV observations. This detection represents the first evidence of VHE variability from this blazar. The integral flux is above 250 GeV, which is about five times higher than the low-flux state. The detection triggered additional VERITAS observations during standard dark-time. Multiwavelength observations with the FLWO 48″ telescope, and the Swift and Fermi satellites are presented and used to produce the first spectral energy distribution (SED) of this object during γ-ray flaring activity. The SED is then fitted with a standard synchrotron-self-Compton model, placing constraints on the properties of the emitting region and of the acceleration mechanism at the origin of the relativistic particle population in the jet.


The Astrophysical Journal | 2016

A SEARCH for BRIEF OPTICAL FLASHES ASSOCIATED with the SETI TARGET KIC 8462852

A. U. Abeysekara; S. Archambault; A. Archer; W. Benbow; R. Bird; M. Buchovecky; J. H. Buckley; K. L. Byrum; J. V. Cardenzana; M. Cerruti; X. Chen; J. L. Christiansen; L. Ciupik; W. Cui; H. J. Dickinson; J. D. Eisch; M. Errando; A. Falcone; D. J. Fegan; Q. Feng; J. P. Finley; H. Fleischhack; P. Fortin; L. Fortson; A. Furniss; G. H. Gillanders; S. Griffin; J. Grube; G. Gyuk; M. Hütten

This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, and the Smithsonian Institution, and by NSERC in Canada.


The Astrophysical Journal | 2014

Very-high Energy Observations of the Galactic Center Region by VERITAS in 2010-2012

A. Archer; A. Barnacka; M. Beilicke; W. Benbow; K. Berger; R. Bird; J. Biteau; J. H. Buckley; V. Bugaev; K. L. Byrum; J. V. Cardenzana; M. Cerruti; W. Chen; X. Chen; L. Ciupik; M. P. Connolly; W. Cui; H. J. Dickinson; J. Dumm; J. D. Eisch; A. Falcone; S. Federici; Q. Feng; J. P. Finley; H. Fleischhack; L. Fortson; A. Furniss; N. Galante; S. Griffin; S. T. Griffiths

The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) gamma-ray observations. Potential sources of GeV/TeV gamma-ray emission have been suggested, e.g., the accretion of matter onto the supermassive black hole, cosmic rays from a nearby supernova remnant (e.g., Sgr A East), particle acceleration in a plerion, or the annihilation of dark matter particles. The Galactic center has been detected by EGRET and by Fermi/LAT in the MeV/GeV energy band. At TeV energies, the Galactic center was detected with moderate significance by the CANGAROO and Whipple 10 m telescopes and with high significance by H.E.S.S., MAGIC, and VERITAS. We present the results from three years of VERITAS observations conducted at large zenith angles resulting in a detection of the Galactic center on the level of 18 standard deviations at energies above similar to 2.5 TeV. The energy spectrum is derived and is found to be compatible with hadronic, leptonic, and hybrid emission models discussed in the literature. Future, more detailed measurements of the high-energy cutoff and better constraints on the high-energy flux variability will help to refine and/or disentangle the individual models.


The Astrophysical Journal | 2017

Gamma-Ray Observations of Tycho’s Supernova Remnant with VERITAS and Fermi

S. Archambault; A. Archer; W. Benbow; R. Bird; E. Bourbeau; M. Buchovecky; J. H. Buckley; V. Bugaev; M. Cerruti; M. P. Connolly; W. Cui; Vikram V. Dwarkadas; M. Errando; A. Falcone; Q. Feng; J. P. Finley; H. Fleischhack; L. Fortson; A. Furniss; S. Griffin; M. Hütten; D. Hanna; J. Holder; C. A. Johnson; P. Kaaret; P. Kar; N. Kelley-Hoskins; M. Kertzman; D. Kieda; M. Krause

High-energy gamma-ray emission from supernova remnants (SNRs) has provided a unique perspective for studies of Galactic cosmic-ray acceleration. Tycho’s SNR is a particularly good target because it is a young, type Ia SNR that is well-studied over a wide range of energies and located in a relatively clean environment. Since the detection of gamma-ray emission from Tycho’s SNR by VERITAS and Fermi -LAT, there have been several theoretical models proposed to explain its broadband emission and high-energy morphology. We report on an update to the gamma-ray measurements of Tycho’s SNR with 147 hours of VERITAS and 84 months of Fermi -LAT observations, which represents about a factor of two increase in exposure over previously published data. About half of the VERITAS data benefited from a camera upgrade, which has made it possible to extend the TeV measurements toward lower energies. The TeV spectral index measured by VERITAS is consistent with previous results, but the expanded energy range softens a straight power-law fit. At energies higher than 400 GeV, the power-law index is 2.92±0.42stat±0.20sys. It is also softer than the spectral index in the GeV energy range, 2.14±0.09stat ±0.02sys, measured by this study using Fermi–LAT data. The centroid position of the gamma-ray emission is coincident with the center of the remnant, as well as with the centroid measurement of Fermi–LAT above 1 GeV. The results are consistent with an SNR shell origin of the emission, as many models assume. The updated spectrum points to a lower maximum particle energy than has been suggested previously. Subject headings: supernova remnant: general – supernova remnant: individual(Tycho’s SNR) – gamma


The Astrophysical Journal | 2017

Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS

S. Archambault; A. Archer; W. Benbow; M. Buchovecky; V. Bugaev; M. Cerruti; M. P. Connolly; W. Cui; A. Falcone; M. Fernández Alonso; J. P. Finley; H. Fleischhack; L. Fortson; A. Furniss; S. Griffin; M. Hütten; O. Hervet; J. Holder; T. B. Humensky; C. A. Johnson; P. Kaaret; P. Kar; D. Kieda; M. Krause; F. Krennrich; M. J. Lang; T. T. Y. Lin; G. Maier; S. McArthur; P. Moriarty

We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGN), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma rays from AGN interact with extragalactic background light (EBL) photons to produce electron-positron pairs, which then interact with cosmic microwave background (CMB) photons via inverse-Compton scattering to produce gamma rays. Due to the deflection of the electron-positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around


The Astrophysical Journal | 2016

Exceptionally Bright TEV Flares from the Binary LS I +61° 303

S. Archambault; A. Archer; T. Aune; A. Barnacka; W. Benbow; R. Bird; M. Buchovecky; J. H. Buckley; V. Bugaev; K. L. Byrum; J. V. Cardenzana; M. Cerruti; X. Chen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; H. J. Dickinson; J. Dumm; J. D. Eisch; A. Falcone; Q. Feng; J. P. Finley; H. Fleischhack; A. Flinders; P. Fortin; L. Fortson; A. Furniss; G. H. Gillanders; S. Griffin

10^{-14}


The Astrophysical Journal | 2017

A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30

A. U. Abeysekara; S. Archambault; A. Archer; W. Benbow; R. Bird; M. Buchovecky; J. H. Buckley; V. Bugaev; K. L. Byrum; M. Cerruti; X. Chen; L. Ciupik; W. Cui; H. J. Dickinson; J. D. Eisch; M. Errando; A. Falcone; Q. Feng; J. P. Finley; H. Fleischhack; L. Fortson; A. Furniss; G. H. Gillanders; S. Griffin; J. Grube; M. Hütten; N. Håkansson; D. Hanna; J. Holder; T. B. Humensky

G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.


Monthly Notices of the Royal Astronomical Society | 2016

Discovery of very high energy gamma rays from 1ES 1440 + 122

S. Archambault; A. Archer; A. Barnacka; B. Behera; M. Beilicke; W. Benbow; K. Berger; R. Bird; M. Böttcher; J. H. Buckley; V. Bugaev; J. V. Cardenzana; M. Cerruti; X. Chen; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; H. J. Dickinson; J. Dumm; J. D. Eisch; M. Errando; A. Falcone; S. Federici; Q. Feng; J. P. Finley; H. Fleischhack; L. Fortson; A. Furniss

This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada.


The Astrophysical Journal | 2016

A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS

E. Aliu; S. Archambault; A. Archer; W. Benbow; R. Bird; J. Biteau; M. Buchovecky; J. H. Buckley; V. Bugaev; K. L. Byrum; J. V. Cardenzana; M. Cerruti; X. Chen; L. Ciupik; M. P. Connolly; W. Cui; H. J. Dickinson; J. D. Eisch; A. Falcone; Q. Feng; J. P. Finley; H. Fleischhack; A. Flinders; P. Fortin; L. Fortson; A. Furniss; G. H. Gillanders; S. Griffin; J. Grube; G. Gyuk

B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope ...


The Astrophysical Journal | 2016

Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts

A. Archer; W. Benbow; R. Bird; E. Bourbeau; M. Buchovecky; J. H. Buckley; V. Bugaev; K. L. Byrum; M. Cerruti; M. P. Connolly; W. Cui; M. Errando; A. Falcone; Q. Feng; M. Fernandez-Alonso; J. P. Finley; H. Fleischhack; A. Flinders; L. Fortson; A. Furniss; S. Griffin; J. Grube; M. Hütten; D. Hanna; O. Hervet; J. Holder; T. B. Humensky; C. A. Johnson; P. Kaaret; P. Kar

The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 hours, resulted in the discovery of

Collaboration


Dive into the A. Archer's collaboration.

Top Co-Authors

Avatar

A. Furniss

California State University

View shared research outputs
Top Co-Authors

Avatar

L. Fortson

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Falcone

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Bugaev

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Buchovecky

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge