A. Aret
Tartu Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Aret.
Astronomy and Astrophysics | 2013
Brankica Šurlan; W.-R. Hamann; A. Aret; Jiří Kubát; L. M. Oskinova; A. F. Torres
Context. Recent studies of O-type stars have demonstrated that discrepant mass-loss rates are obtained when different diagnostic methods are employed. Fitting the unsaturated UV resonance lines (e.g., P v) gives drastically lower values than obtained from the Hα emission. Wind inhomogeneity (so-called “clumping”) may be the main cause of this discrepancy. Aims. In a previous paper, we presented 3D Monte-Carlo calculations for the formation of scattering lines in a clumped stellar wind. In the present paper we select five O-type supergiants (from O4 to O7) and test whether the reported discrepancies can be resolved this way. Methods. In the first step, the analyses started with simulating the observed spectra with Potsdam Wolf-Rayet (PoWR) non-LTE model atmospheres. The mass-loss rates are adjusted to fit to the observed Hα emission lines best. For the unsaturated UV resonance lines (i.e., P v) we then applied our 3D Monte-Carlo code, which can account for wind clumps of any optical depths (“macroclumping”), a non-void interclump medium, and a velocity dispersion inside the clumps. The ionization stratifications and underlying photospheric spectra were adopted from the PoWR models. The properties of the wind clumps were constrained by fitting the observed resonance line profiles. Results. Our results show that with the mass-loss rates that fit Hα (and other Balmer and He ii lines), the UV resonance lines (especially the unsaturated doublet of P v) can also be reproduced with no problem when macroclumping is taken into account. There is no need to artificially reduce the mass-loss rates or to assume a subsolar phosphorus abundance or an extremely high clumping factor, unlike what was claimed by other authors. These consistent mass-loss rates are lower by a factor of 1.3 to 2.6, compared to the mass-loss rate recipe from Vink et al. Conclusions. Macroclumping resolves the previously reported discrepancy between Hα and P v mass-loss diagnostics.
Monthly Notices of the Royal Astronomical Society | 2012
A. Aret; M. Kraus; M. F. Muratore; M. Borges Fernandes
The disc formation mechanism of B[e] supergiants is one of the puzzling phenomena in massive star evolution. Rapid stellar rotation seems to play an important role for the non-spherically symmetric mass-loss leading to a high-density disc- or ring-like structure of neutral material around these massive and luminous objects. The radial density and temperature structure as well as the kinematics within this high-density material are, however, not well studied. Based on the high-resolution optical spectra of a sample of B[e] supergiants in the Magellanic Clouds we especially searched for tracers of the kinematics within their discs. Besides the well-known [Oxa0i] lines, we discovered the [Caxa0ii] λλ7291, 7324 lines which can be used as a complementary set of disc tracers. We find that these lines originate from very high density regions, located closer to the star than the [Oxa0i] λ5577 line-forming region. The line profiles of both the [Oxa0i] and the [Caxa0ii] lines indicate that the discs or rings of high-density material are in Keplerian rotation. We estimate plausible ranges of disc inclination angles for the sample of B[e] supergiants and suggest that the star LHAxa0120-Sxa022 might have a spiral arm rather than a disc.
Astronomy and Astrophysics | 2013
M. Kraus; M. E. Oksala; D. H. Nickeler; M. F. Muratore; M. Borges Fernandes; A. Aret; Lydia Cidale; W. J. de Wit
The appearance of the B[e] phenomenon in evolved massive stars such as B[e] supergiants is still a mystery. While these stars are generally found to have disks that are cool and dense enough for efficient molecule and dust condensation, the origin of the disk material is still unclear. We aim at studying the kinematics and origin of the disk in the eccentric binary system GG Car, whose primary component is proposed to be a B[e] supergiant. Based on medium- and high-resolution near-infrared spectra we analyzed the CO-band emission detected from GG Car. The complete CO-band structure delivers information on the density and temperature of the emitting region, and the detectable 13CO bands allow us to constrain the evolutionary phase. In addition, the kinematics of the CO gas can be extracted from the shape of the first 12CO band head. We find that the CO gas is located in a ring surrounding the eccentric binary system, and its kinematics agrees with Keplerian rotation with a velocity, projected to the line of sight, of (80pm 1) km/s. The CO ring has a column density of (5pm 3)x10^21 cm^-2 and a temperature of 3200pm 500 K. In addition, the material is chemically enriched in 13CO, which agrees with the primary component being slightly evolved off the main sequence. We discuss two possible scenarios for the origin of the circumbinary disk: (i) non-conservative Roche lobe overflow, and (ii) the possibility that the progenitor of the primary component could have been a classical Be star. Neither can be firmly excluded, but for Roche lobe overflow to occur, a combination of stellar and orbital parameter extremawould be required.
Monthly Notices of the Royal Astronomical Society | 2016
A. Aret; M. Kraus; Miroslav Šlechta
Emission-line stars are typically surrounded by dense circumstellar material, often in form of rings or disc-like structures. Line emission from forbidden transitions trace a diversity of density and temperature regimes. Of particular interest are the forbidden lines of [O I] {lambda}{lambda}6300, 6364 and [Ca II] {lambda}{lambda}7291, 7324. They arise in complementary, high-density environments, such as the inner-disc regions around B[e] supergiants. To study physical conditions traced by these lines and to investigate how common they are, we initiated a survey of emission-line stars. Here, we focus on a sample of nine B[e] stars in different evolutionary phases. Emission of the [O I] lines is one of the characteristics of B[e] stars. We find that four of the objects display [Ca II] line emission: for the B[e] supergiants V1478 Cyg and 3 Pup the kinematics obtained from the [O I] and [Ca II] line profiles agrees with a Keplerian rotating disc scenario; the forbidden lines of the compact planetary nebula OY Gem display no kinematical broadening beyond spectral resolution; the LBV candidate V1429 Aql shows no [O I] lines, but the profile of its [Ca II] lines suggests that the emission originates in its hot, ionized circumbinary disc. As none of the B[e] stars of lower mass displays [Ca II] line emission, we conclude that these lines are more likely observable in massive stars with dense discs, supporting and strengthening the suggestion that their appearance requires high-density environments.
Astronomy and Astrophysics | 2015
M. Kraus; M. Haucke; Lydia Cidale; R. Venero; D. H. Nickeler; P. Nemeth; E. Niemczura; S. Tomic; A. Aret; J. Kubat; B. Kubatova; M. E. Oksala; Michel Cure; K. Kaminski; W. Dimitrov; M. Fagas; M. Polinska
Blue supergiant stars are known to display photometric and spectroscopic variability that is suggested to be linked to stellar pulsations. Pulsational activity in massive stars strongly depends on the stars evolutionary stage and is assumed to be connected with mass-loss episodes, the appearance of macroturbulent line broadening, and the formation of clumps in the wind. To investigate a possible interplay between pulsations and mass-loss, we carried out an observational campaign of the supergiant 55 Cyg over a period of five years to search for photospheric activity and cyclic mass-loss variability in the stellar wind. We modeled the H, He I, Si II and Si III lines using the nonlocal thermal equilibrium atmosphere code FASTWIND and derived the photospheric and wind parameters. In addition, we searched for variability in the intensity and radial velocity of photospheric lines and performed a moment analysis of the line profiles to derive frequencies and amplitudes of the variations. The Halpha line varies with time in both intensity and shape, displaying various types of profiles: P Cygni, pure emission, almost complete absence, and double or multiple peaked. The star undergoes episodes of variable mass-loss rates that change by a factor of 1.7-2 on different timescales. We also observe changes in the ionization rate of Si II and determine a multiperiodic oscillation in the He I absorption lines, with periods ranging from a few hours to 22.5 days. We interpret the photospheric line variations in terms of oscillations in p-, g-, and strange modes. We suggest that these pulsations can lead to phases of enhanced mass loss. Furthermore, they can mislead the determination of the stellar rotation. We classify the star as a post-red supergiant, belonging to the group of alpha Cyg variables.
New Astronomy Reviews | 2009
Arved Sapar; A. Aret; L. Sapar; R. Poolamäe
Abstract Formation of anomalous isotope abundances in the atmospheres of chemically peculiar (CP) stars can be explained by light-induced drift (LID). This effect is additional to the radiative acceleration and appears due to systematic asymmetry of radiative flux in partly overlapping isotopic spectral line profiles. LID causes levitation of an isotope with a red-shifted spectral line and sinking of an isotope with a blue-shifted line, generating thus diffusive separation of isotopes. We have studied diffusion of mercury as a typical well-studied isotope-rich heavy metal. Our model computations show that in mercury-rich quiescent atmospheres of CP stars LID causes levitation of the heavier mercury isotopes and sinking of the lighter ones. Precise quantitative modelling of the process of isotope separation demands very high-resolution computations and the high-precision input data, including data on hyperfine and isotopic splitting of spectral lines, adequate line profiles and impact cross-sections. Presence of microturbulence and weak stellar winds can essentially reduce the effect of radiative-driven diffusion.
Astronomy and Astrophysics | 2016
M. Kraus; Lydia Cidale; M. L. Arias; G. Maravelias; D. H. Nickeler; A. F. Torres; M. Borges Fernandes; A. Aret; Michel Cure; R. Vallverdu; Rodolfo H. Barba
Context. B[e] supergiants are evolved massive stars, enshrouded in a dense wind and surrounded by a molecular and dusty disk. The mechanisms that drive phases of enhanced mass loss and mass ejections, responsible for the shaping of the circumstellar material of these objects, are still unclear. Aims. We aim to improve our knowledge on the structure and dynamics of the circumstellar disk of the Large Magellanic Cloud B[e] supergiant LHAu2009120-Su200973. Methods. High-resolution optical and near-infrared spectroscopic data were obtained over a period of 16 and 7 yr, respectively. The spectra cover the diagnostic emission lines from [Cau2009ii] and [Ou2009i], as well as the CO bands. These features trace the disk at different distances from the star. We analyzed the kinematics of the individual emission regions by modeling their emission profiles. A low-resolution mid-infrared spectrum was obtained as well, which provides information on the composition of the dusty disk. Results. All diagnostic emission features display double-peaked line profiles, which we interpret as due to Keplerian rotation. We find that the profile of each forbidden line contains contributions from two spatially clearly distinct rings. In total, we find that LHAu2009120-Su200973 is surrounded by at least four individual rings of material with alternating densities (or by a disk with strongly non-monotonic radial density distribution). Moreover, we find that the molecular ring must have gaps or at least strong density inhomogeneities, or in other words, a clumpy structure. The optical spectra additionally display a broad emission feature at 6160–6180u2009A, which we interpret as molecular emission from TiO. The mid-infrared spectrum displays features of oxygen- and carbon-rich grain species, which indicates a long-lived, stable dusty disk. We cannot confirm the previously reported high value for the stellar rotation velocity. Heu2009i λ 5876 is the only clearly detectable pure atmospheric absorption line in our data. Its line profile is strongly variable in both width and shape and resembles of those seen in non-radially pulsating stars. A proper determination of the real underlying stellar rotation velocity is hence not possible. Conclusions. The existence of multiple stable and clumpy rings of alternating density recalls ring structures around planets. Although there is currently insufficient observational evidence, it is tempting to propose a scenario with one (or more) minor bodies or planets revolving around LHAu2009120-Su200973 and stabilizing the ring system, in analogy to the shepherd moons in planetary systems.
arXiv: Solar and Stellar Astrophysics | 2008
A. Aret; Arved Sapar; R. Poolamäe; L. Sapar
Program SMART (Spectra and Model Atmospheres by Radiative Transfer) has been composed for modelling atmospheres and spectra of hot stars (O, B and A spectral classes) and studying different physical processes in them (Sapar & Poolaae 2003, Sapar et al. 2007). Line-blanketed models are computed assuming plane-parallel, static and horizontally homogeneous atmosphere in radiative, hydrostatic and local thermodynamic equilibrium. Main advantages of SMART are its shortness, simplicity, user friendliness and flexibility for study of different physical processes. SMART successfully runs on PC both under Windows and Linux.
arXiv: Astrophysics | 2008
Arved Sapar; A. Aret; L. Sapar; R. Poolamäe
We propose a new method for determination of element abundances in stellar atmospheres aimed for the automatic processing of high-quality stellar spectra. The pan-spectral method is based on weighted cumulative line-widths ( Q_lambda = int_{lambda _0 }^lambda {left| {frac{{dR_lambda }} {{dZ}}} right|} (1 - R_lambda )dlambda ), where R λ is residual flux and Z is abundance of studied element. Difference in quantities Q λ found from synthetic and observed spectra gives a correction to the initial abundance. Final abundances are then found by rapidly converging iterations. Calculations can be made for many elements simultaneously and do not demand supercomputers.
Eas Publications Series | 2015
G. Maravelias; M. Kraus; A. Aret
B[e] supergiants are evolved massive stars with a complex circumstellar environment. A number of important emission features probe the structure and the kinematics of the circumstellar material. In our survey of Magellanic Cloud B[e] supergiants we focus on the [OI] and [CaII] emission lines, which we identified in four more objects.