Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Ariga is active.

Publication


Featured researches published by A. Ariga.


Physical Review D | 2013

The T2K Neutrino Flux Prediction

A. Ariga; T. Ariga; F. Bay; A. Ereditato; E. Frank; I. Kreslo; M. Messina

The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the Japan Proton Accelerator Research Complex accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector—Super-Kamiokande—located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3-based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is reweighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA61/SHINE experiment. For the first T2K analyses the uncertainties on the flux prediction are evaluated to be below 15% near the flux peak. The uncertainty on the ratio of the flux predictions at the far and near detectors is less than 2% near the flux peak.


Physical Review D | 2013

Measurement of the Inclusive NuMu Charged Current Cross Section on Carbon in the Near Detector of the T2K

A. Ariga; T. Ariga; F. Bay; A. Ereditato; E. Frank; I. Kreslo; M. Messina

T2K has performed the first measurement of nu(mu) inclusive charged current interactions on carbon at neutrino energies of similar to 1 GeV where the measurement is reported as a flux-averaged double differential cross section in muon momentum and angle. The flux is predicted by the beam Monte Carlo and external data, including the results from the NA61/SHINE experiment. The data used for this measurement were taken in 2010 and 2011, with a total of 10.8 x 10(19) protons-on-target. The analysis is performed on 4485 inclusive charged current interaction candidates selected in the most upstream fine-grained scintillator detector of the near detector. The flux-averaged total cross section is (phi) = (6.91 +/- 0.13(stat) +/- 0.84(syst)) x 10(-39) cm(2)/nucleon for a mean neutrino energy of 0.85 GeV.


Nature Communications | 2014

A moiré deflectometer for antimatter

S. Aghion; O. Ahlén; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; K. Berggren; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi; A. Gligorova

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.


Journal of Instrumentation | 2013

A new application of emulsions to measure the gravitational force on antihydrogen

C. Amsler; A. Ariga; T. Ariga; Saverio Braccini; C. Canali; A. Ereditato; J. Kawada; M. Kimura; I. Kreslo; C. Pistillo; P. Scampoli; J. Storey

We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the annihilation vertex of antihydrogen atoms after their free fall while moving horizontally in a vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle detectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.


Journal of Instrumentation | 2014

Fast 4π track reconstruction in nuclear emulsion detectors based on GPU technology

A. Ariga; T. Ariga

Fast 4π solid angle particle track recognition has been a challenge in particle physics for a long time, especially in using nuclear emulsion detectors. The recent advances in computing technology opened the way for its realization. A fast 4π solid angle particle track reconstruction based on GPU technology combined with a multithread programming is reported here with a detailed comparison of processing time by CPUs with respect to using GPUs. By employing 3 state-of-the-art GPUs with a multithread programming, a 60 times faster processing of 3D emulsion detector data has been achieved with an excellent tracking performance in comparison with a single-thread CPU processing, corresponding to processing of 15 cm2 emulsion surface scanned per hour.


NON-NEUTRAL PLASMA PHYSICS VIII: 10th International Workshop on Non-Neutral Plasmas | 2013

AEgIS experiment commissioning at CERN

D. Krasnický; S. Aghion; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; G. Bonomi; P. Bräunig; R. S. Brusa; J. Bremer; G. Burghart; L. Cabaret; M. Caccia; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; L. Dassa; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi

The AEgIS Experiment is an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the gravitational field of the Earth. Cold antihydrogen will be produced with a pulsed charge exchange reaction in a cylindrical Penning trap where antiprotons will be cooled to 100mK. The cold antihydrogen will be produced in an excited Rydberg state and subsequently formed into a beam. The deflection of the antihydrogen beam will be measured by using Moire deflectometer gratings. After being approved in late 2008, AEgIS started taking data in a commissioning phase early 2012. This report presents an overview of the AEgIS experiment, describes its current status and shows the first measurements on antiproton catching and cooling in the 5 T Penning catching trap. We will also present details on the techniques needed for the 100mK antihydrogen production, such as pulsed positronium production and its excitation with lasers.


Journal of Instrumentation | 2015

Particle tracking at cryogenic temperatures: the Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

J. Storey; S. Aghion; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; M. Caccia; R. Caravita; F. Castelli; G. Cerchiari; K. Chlouba; S. Cialdi; D. Comparat; G. Consolati; H. Derking; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; S. Gerber; M. Giammarchi; A. Gligorova; Sergei Gninenko

The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earths gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moire deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.


International Journal of Modern Physics: Conference Series | 2014

Measuring

D. Krasnický; S. Aghion; O. Ahlén; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; K. Berggren; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi

experiments main goal is to measure the local gravitational acceleration of antihydrogen and thus perform a direct test of the weak equivalence principle with antimatter. In the first phase of the experiment the aim is to measure with 1% relative precision. This paper presents the antihydrogen production method and a description of some components of the experiment, which are necessary for the gravity measurement. Current status of the experimental apparatus is presented and recent commissioning results with antiprotons are outlined. In conclusion we discuss the short-term goals of the collaboration that will pave the way for the first gravity measurement in the near future.


2nd International Workshop on Antimatter and Gravity (WAG 2013) | 2014

\bar{g}

C. Amsler; A. Ariga; Tomoko Ariga; A. Ereditato; J. Kawada; M. Kimura; C. Pistillo; P. Scampoli; J. Storey

experiments main goal is to measure the local gravitational acceleration of antihydrogen and thus perform a direct test of the weak equivalence principle with antimatter. In the first phase of the experiment the aim is to measure with 1% relative precision. This paper presents the antihydrogen production method and a description of some components of the experiment, which are necessary for the gravity measurement. Current status of the experimental apparatus is presented and recent commissioning results with antiprotons are outlined. In conclusion we discuss the short-term goals of the collaboration that will pave the way for the first gravity measurement in the near future.


Journal of Instrumentation | 2016

with

T. Ariga; A. Ariga; K. Kuwabara; K. Morishima; Masaki Moto; Akira Nishio; P. Scampoli; Mykhailo Vladymyrov

Photographic emulsion is a particle tracking device which features the best spatial resolution among particle detectors. For certain applications, for example muon radiography, large-scale detectors are required. Therefore, a huge surface has to be analyzed by means of automated optical microscopes. An improvement of the readout speed is then a crucial point to make these applications possible and the availability of a new type of photographic emulsions featuring crystals of larger size is a way to pursue this program. This would allow a lower magnification for the microscopes, a consequent larger field of view resulting in a faster data analysis. In this framework, we developed new kinds of emulsion detectors with a crystal size of 600-1000 nm, namely 3-5 times larger than conventional ones, allowing a 25 times faster data readout. The new photographic emulsions have shown a sufficient sensitivity and a good signal to noise ratio. The proposed development opens the way to future large-scale applications of the technology, e.g. 3D imaging of glacier bedrocks or future neutrino experiments.

Collaboration


Dive into the A. Ariga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Ferragut

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

S. Aghion

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

G. Bonomi

University of Brescia

View shared research outputs
Top Co-Authors

Avatar

A. Fontana

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Comparat

University of Paris-Sud

View shared research outputs
Researchain Logo
Decentralizing Knowledge