A.B. Ross
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A.B. Ross.
Bioresource Technology | 2011
Patrick Biller; A.B. Ross
A range of model biochemical components, microalgae and cyanobacteria with different biochemical contents have been liquefied under hydrothermal conditions at 350 °C, ∼200 bar in water, 1M Na(2)CO(3) and 1M formic acid. The model compounds include albumin and a soya protein, starch and glucose, the triglyceride from sunflower oil and two amino acids. Microalgae include Chlorella vulgaris,Nannochloropsis occulata and Porphyridium cruentum and the cyanobacteria Spirulina. The yields and product distribution obtained for each model compound have been used to predict the behaviour of microalgae with different biochemical composition and have been validated using microalgae and cyanobacteria. Broad agreement is reached between predictive yields and actual yields for the microalgae based on their biochemical composition. The yields of bio-crude are 5-25 wt.% higher than the lipid content of the algae depending upon biochemical composition. The yields of bio-crude follow the trend lipids>proteins>carbohydrates.
Bioresource Technology | 2008
A.B. Ross; J.M. Jones; M.L. Kubacki; Toby Bridgeman
A preliminary classification of five macroalgae from the British Isles; Fucus vesiculosus, Chorda filum, Laminaria digitata, Fucus serratus, Laminaria hyperborea, and Macrocystis pyrifera from South America, has been presented in terms of a Van Krevelen diagram. The macroalgae have been characterised for proximate and ultimate analysis, inorganic content, and calorific value. The different options for thermal conversion and behaviour under combustion and pyrolysis have been evaluated and compared to several types of terrestrial biomass including Miscanthus, short rotation Willow coppice and Oat straw. Thermal treatment of the macroalgae has been investigated using thermogravimetry (TGA) and pyrolysis-gc-ms. Combustion behaviour is investigated using TGA in an oxidising atmosphere. The suitability of macroalgae for the different thermal processing routes is discussed. Ash chemistry restricts the use of macroalgae for direct combustion and gasification. Pyrolysis produces a range of pentosans and a significant proportion of nitrogen containing compounds. High char yields are produced.
Bioresource Technology | 2011
K. Anastasakis; A.B. Ross
The brown macro-alga Laminaria saccharina was converted into bio-crude by hydrothermal liquefaction in a batch reactor. The influence of reactor loading, residence time, temperature and catalyst (KOH) loading was assessed. A maximum bio-crude yield of 19.3 wt% was obtained with a 1:10 biomass:water ratio at 350 °C and a residence time of 15 min without the presence of the catalyst. The bio-crude had an HHV of 36.5 MJ/kg and is similar in nature to a heavy crude oil or bitumen. The solid residue has high ash content and contains a large proportion of calcium and magnesium. The aqueous phase is rich in sugars and ammonium and contains a large proportion of potassium and sodium.
Bioresource Technology | 2011
Patrick Biller; R. Riley; A.B. Ross
Hydrothermal processing of high lipid feedstock such as microalgae is an alternative method of oil extraction which has obvious benefits for high moisture containing biomass. A range of microalgae and lipids extracted from terrestrial oil seed have been processed at 350 °C, at pressures of 150-200 bar in water. Hydrothermal liquefaction is shown to convert the triglycerides to fatty acids and alkanes in the presence of certain heterogeneous catalysts. This investigation has compared the composition of lipids and free fatty acids from solvent extraction to those from hydrothermal processing. The initial decomposition products include free fatty acids and glycerol, and the potential for de-oxygenation using heterogeneous catalysts has been investigated. The results indicate that the bio-crude yields from the liquefaction of microalgae were increased slightly with the use of heterogeneous catalysts but the higher heating value (HHV) and the level of de-oxygenation increased, by up to 10%.
Bioresource Technology | 2011
Jessica Adams; A.B. Ross; K. Anastasakis; Edward Hodgson; Joseph Gallagher; J.M. Jones; Iain S. Donnison
To avoid negative impacts on food production, novel non-food biofuel feedstocks need to be identified and utilised. One option is to utilise marine biomass, notably fast-growing, large marine plants such as the macroalgal kelps. This paper reports on the changing composition of Laminaria digitata throughout it growth cycle as determined by new technologies. The potential of Laminaria sp. as a feedstock for biofuel production and future biorefining possibilities was assessed through proximate and ultimate analysis, initial pyrolysis rates using thermo-gravimetric analysis (TGA), metals content and pyrolysis gas chromatography-mass spectrometry. Samples harvested in March contained the lowest proportion of carbohydrate and the highest ash and alkali metal content, whereas samples harvested in July contained the highest proportions of carbohydrate, lowest alkali metals and ash content. July was therefore considered the most suitable month for harvesting kelp biomass for thermochemical conversion to biofuels.
Bioresource Technology | 2009
Vitaly Budarin; James H. Clark; Brigid Lanigan; Peter S. Shuttleworth; Simon W. Breeden; Ashley J. Wilson; Duncan J. Macquarrie; Kris Milkowski; J.M. Jones; Toby Bridgeman; A.B. Ross
The low temperature microwave activation of biomass has been investigated as a novel, energy efficient route to bio-oils. The properties of the bio-oil produced were considered in terms of fuel suitability. Water content, elemental composition and calorific value have all been found to be comparable to and in many cases better than conventional pyrolysis oils. Compositional analysis shows further differences with conventional pyrolysis oils including simpler chemical mixtures, which have potential as fuel and chemical intermediates. The use of simple additives, e.g. HCl, H(2)SO(4) and NH(3), affects the process product distribution, along with changes in the chemical composition of the oils. Clearly the use of our low temperature technology gives significant advantages in terms of preparing a product that is much closer to that which is required for transport fuel applications.
Fuel | 2002
A.B. Ross; J.M. Jones; Suparin Chaiklangmuang; M. Pourkashanian; A. Williams; Krystyna Kubica; Jan T. Andersson; Melanie Kerst; Pavel Danihelka; Keith D. Bartle
In many Eastern European countries the emission of pollutants from coal fired domestic and small commercial heating plants is a serious problem. One alternative method to reduce emissions is by burning coal with biomass that is by co-combustion, which would reduce the amount of net CO2 produced, the rate of reduction of coal reserves, and the overall amounts of pollutants. The effects of co-combustion of coal and biomass on the levels of pollutant formation have been studied for a 30 kW domestic boiler. Of particular interest are the emissions of PAH and VOC since it has been shown that these emissions are lowered during co-combustion. The relation between boiler design fuel composition and measured emission profiles for VOC and PAH is discussed in detail. Outputs from modelling of the emissions and devolatilisation characteristics of the fuels have been compared to measured values. Analytical methods have been developed for characterisation of the initial devolatilisation products from both coal and biomass fuels and the relation to modelling is discussed. The fate of these initial devolatilisation products and the effect of boiler design on the formation of PAH and soot in the post combustion zones is addressed.
Chemosphere | 2016
C.A. Takaya; L.A. Fletcher; S. Singh; K.U. Anyikude; A.B. Ross
The potential for biochar and hydrochar to adsorb phosphate and ammonium is important for understanding the influence of these materials when added to soils, compost or other high nutrient containing environments. The influence of physicochemical properties such as mineral content, surface functionality, pH and cation exchange capacity has been investigated for a range of biochars and hydrochars produced from waste-derived biomass feedstocks. Hydrochars produced from hydrothermal carbonisation at 250 °C have been compared to low and high temperature pyrolysis chars produced at 400-450 °C and 600-650 °C respectively for oak wood, presscake from anaerobic digestate (AD), treated municipal waste and greenhouse waste. In spite of differences in char physicochemical properties and processing conditions, PO4-P and NH4-N sorption capacities ranged from about 0 to 30 mg g(-1) and 105.8-146.4 mg g(-1) respectively. Chars with high surface areas did not possess better ammonium adsorption capacities than low surface area chars, which suggests that surface area is not the most important factor influencing char ammonium adsorption capacity, while char calcium and magnesium contents may influence phosphate adsorption. Desorption experiments only released a small fraction of adsorbed ammonium or phosphate (<5 mg g(-1) and a maximum of 8.5 mg g(-1) respectively).
Bioresource Technology | 2016
U. Ekpo; A.B. Ross; Miller Camargo-Valero; Paul T. Williams
Thermal hydrolysis and hydrothermal processing show promise for converting biomass into higher energy density fuels. Both approaches facilitate the extraction of inorganics into the aqueous product. This study compares the behaviour of microalgae, digestate, swine and chicken manure by thermal hydrolysis and hydrothermal processing at increasing process severity. Thermal hydrolysis was performed at 170°C, hydrothermal carbonisation (HTC) was performed at 250°C, hydrothermal liquefaction (HTL) was performed at 350°C and supercritical water gasification (SCWG) was performed at 500°C. The level of nitrogen, phosphorus and potassium in the product streams was measured for each feedstock. Nitrogen is present in the aqueous phase as organic-N and NH3-N. The proportion of organic-N is higher at lower temperatures. Extraction of phosphorus is linked to the presence of inorganics such as Ca, Mg and Fe in the feedstock. Microalgae and chicken manure release phosphorus more easily than other feedstocks.
Bioresource Technology | 2016
U. Ekpo; A.B. Ross; Miller Camargo-Valero; L.A. Fletcher
This study investigates the influence of pH on extraction of nitrogen and phosphorus from swine manure following hydrothermal treatment. Conditions include thermal hydrolysis (TH) at 120°C and 170°C, and hydrothermal carbonisation (HTC) at 200°C and 250°C in either water alone or in the presence of 0.1M NaOH, H2SO4, CH3COOH or HCOOH. Phosphorus extraction is pH and temperature dependent and is enhanced under acidic conditions. The highest level of phosphorus is extracted using H2SO4 reaching 94% at 170°C. The phosphorus is largely retained in the residue for all other conditions. The extraction of nitrogen is not as significantly influenced by pH, although the maximum N extraction is achieved using H2SO4. A significant level of organic-N is extracted into the process waters following hydrothermal treatment. The results indicate that operating hydrothermal treatment in the presence of acidic additives has benefits in terms of improving the extraction of phosphorus and nitrogen.