Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Bakas is active.

Publication


Featured researches published by A. Bakas.


Physics in Medicine and Biology | 1998

Monte Carlo generated mammograms : development and validation

G Spyrou; G. Tzanakos; A. Bakas; G. Panayiotakis

We have developed a model using Monte Carlo methods to simulate x-ray mammography. All possible physical processes of interaction of x-rays with matter have been taken into account. A simplified geometry of the mammographic apparatus has been considered along with a software phantom of compressed breast. The phantom may contain inhomogeneities of various compositions and sizes. We have used this model to produce Monte Carlo mammograms under realistic conditions. The validation of the simulation includes both the modelling of physical processes and the production of Monte Carlo mammograms. The first part is accomplished by the demonstration of the coincidence between Monte Carlo and theoretical data, whereas the second is accomplished by the comparison of real mammograms, taken from irradiation of a simplified breast phantom that we have constructed, and Monte Carlo mammograms taken from simulation of the above phantom under the corresponding exposure conditions. The limitations of the model as well as the future use of Monte Carlo mammograms are discussed.


Magnetic Resonance Imaging | 2013

Improvement of image quality using BLADE sequences in brain MR imaging

Eleftherios Lavdas; Panayiotis Mavroidis; Spiros Kostopoulos; Dimitrios Glotsos; Violeta Roka; Theofilos Topalzikis; A. Bakas; Georgia Oikonomou; Nikos Papanikolaou; Georgios Batsikas; Ioannis Kaffes; Dimitrios Kechagias

The purpose of this study is to compare two types of sequences in brain magnetic resonance (MR) examinations of uncooperative and cooperative patients. For each group of patients, the pairs of sequences that were compared were two T2-weighted (T2-W) fluid attenuated inversion recovery sequences with different k-space trajectories (conventional Cartesian and BLADE) and two T2-TSE weighted with different k-space trajectories (conventional Cartesian and BLADE). Twenty-three consecutive uncooperative patients and 44 cooperative patients, who routinely underwent brain MR imaging examination, participated in the study. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio, contrast-to-noise ratio (CNR), and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of motion, other (e.g., Gibbs, susceptibility artifacts, phase encoding from vessels) artifacts and pulsatile flow artifacts was evaluated. In the uncooperative group of patients, BLADE sequences were superior to the corresponding conventional sequences in all the cases. Furthermore, the differences were found to be statistically significant in almost all the cases. In the cooperative group of patients, BLADE sequences were superior to the conventional sequences with the differences of the CNR and ReCon values in nine cases being statistically significant. Furthermore, BLADE sequences eliminated motion and other artifacts and T2 FLAIR BLADE sequences eliminated pulsatile flow artifacts. BLADE sequences (T2-TSE and T2 FLAIR) should be used in brain MR examinations of uncooperative patients. In cooperative patients, T2-TSE BLADE sequences may be used as part of the routine protocol and orbital examinations. T2 FLAIR BLADE sequences may be used optionally in examinations of AVM, orbits, haemorrhages, ventricular lesions, lesions in the frontal lobe, periventricular lesions, lesions in regions close to artifacts and lesions in posterior fossa.


Journal of Physics: Conference Series | 2015

Effect of the Concentration on the X-ray Luminescence Efficiency of a Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) Quantum Dot Nanoparticle Solution

I. Valais; C. Michail; D Nikolopoulos; C. Fountzoula; A. Bakas; P Yannakopoulos; G. Fountos; G. Panayiotakis; I. Kandarakis

In the current study preliminary results on the luminescence efficiency (LE) of toluene dissolved Cadmium Selenide/Zinc Sulfide (CdSe/ZnS, Sigma-Aldrich, Lumidot 694622) quantum dot samples (QDs) after exposure to X-rays of variable radiation flux are shown. The distinctive influence of the weight over volume (w/v) concentration of the samples in LE was investigated. The light emission of the QDs was additionally measured after UV irradiation. The distribution of the emitted light was symmetrical with a maximum at 590 nm. The w/v concentration of the QDs varied between 7.1×10-5 mg/mL to 28.4×10-5 mg/mL. The samples were handled in a cubic 12.5×12.5×45mm3 quartz cuvette. Each sample was excited under X-ray irradiation, in the energy range from 50 to 130 kVp using a BMI General Medical Merate tube with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. The X-ray LE, induced by the 28.4×10-5 mg/mL QDs found higher, however, the distinction was vague in the highly concentrated samples. The maximum efficiency was obtained at the 90 kVp for QDs with 21.3×10-5 mg/mL w/v concentration. In the high energy range (120-130 kVp) all concentration levels exhibited comparable X-ray induced LE. The luminescence properties of the investigated QDs appear promising for X-ray detection applications.


Physics in Medicine and Biology | 2017

Characterization of breast calcification types using dual energy x-ray method

N. Martini; V. Koukou; G. Fountos; C. Michail; A. Bakas; I. Kandarakis; Robert D. Speller; George Nikiforidis

Calcifications are products of mineralization whose presence is usually associated with pathological conditions. The minerals mostly seen in several diseases are calcium oxalate (CaC2O4), calcium carbonate (CaCO3) and hydroxyapatite (HAp). Up to date, there is no in vivo method that could discriminate between minerals. To this aim, a dual energy x-ray method was developed in the present study. An analytical model was implemented for the determination of the Calcium/Phosphorus mass ratio ([Formula: see text]). The simulation was carried out using monoenergetic and polyenergetic x-rays and various calcification thicknesses (100-1000 [Formula: see text]) and types (CaC2O4, CaCO3, HAp). The experimental evaluation of the method was performed using the optimized irradiation conditions obtained from the simulation study. X-ray tubes, combined with energy dispersive and energy integrating (imaging) detectors, were used for the determination of the [Formula: see text] in phantoms of different mineral types and thicknesses. Based on the results of the experimental procedure, statistical significant difference was observed between the different types of minerals when calcification thicknesses were 300 [Formula: see text] or higher.


Journal of Physics: Conference Series | 2017

X-ray imaging resolution of phosphor screens prepared with different grains size and shape of granular Lu2O3:Eu

I. E. Seferis; C. Michail; J. Zeler; I. Valais; G. Fountos; N. Kalyvas; A. Bakas; I. Kandarakis; E. Zych; G. Panayiotakis

The influence of the grain shape and size on spatial resolution (ranging from nano to micro scale) of various Lu2O3:Eu phosphor screens was investigated. All screens were prepared using the sedimentation method. Three screens were prepared with spherical grains and sizes 50 nm, 200 nm and 5 μm, whilst two screens with rod-like shape grains and sizes 500 nm and 1-8 μm. All screens were coupled to a high resolution CMOS digital imaging sensor (Remote RadEye HR) consisting of 1200 x 1600 pixels with 22.5 μm pixel pitch. Experiments were performed under radiographic conditions, using 70 kVp tube voltage and 63 mAs tube load. Spatial resolution was assessed utilizing the Modulation Transfer Function (MTF). It was found that the influence of the grains shape on imaging performance was more crucial than the grain size. The rod-like grains showed very poor spatial resolution. The influence of grains size between 50 nm 200 nm and 5 μm was negligible on MTF values.


SPIE Micro+Nano Materials, Devices, and Applications | 2015

Preparation and imaging performance of nanoparticulated LuPO4:Eu semitransparent films under x-ray radiation

I. E. Seferis; J. Zeler; C. Michail; I. Valais; G. Fountos; N. Kalyvas; A. Bakas; I. Kandarakis; G. Panayiotakis; Eugeniusz Zych

The aim of the present work was to demonstrate the fabrication technique for semitransparent layers of nanoparticulated (~50 nm) LuPO4:15%Eu phosphors. Furthermore, to present their basic luminescent properties and provide results regarding their performance in a planar imaging system incorporating a CMOS photodetector. Parameters such as the Detective Quantum Efficiency (DQE), the Normalized Noise Power Spectrum (NNPS) and the Modulation Transfer Function (MTF), were investigated. The NNPS was found to present significantly higher values near the zero frequency for the 67 μm, 100 μm films, pointing on their higher non uniformities compared to the 220 and 460 μm films For the two thickest films (460 μm and 220 μm) the MTF curves practically do not differ, while MTFs for the thinner layers of 100 μm and 67 μm are higher as the layer’s thickness decreases. The higher DQE values observed for the 220 μm and 460 μm films up to medium frequencies, while at high frequencies the DQE values are comparable. Although the MTF values of these films are much lower than the thinner screens, the capability of the higher x-ray absorption, in conjunction with the low noise properties, lead to higher DQE values. The LuPO4:Eu semitransparent films seems to be a very promising scintillator for stationary x-ray imaging. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains, and thus without sacrificing their translucent character.


Journal of Physics: Conference Series | 2015

Optimization of breast cancer detection in Dual Energy X-ray Mammography using a CMOS imaging detector

V. Koukou; G. Fountos; N. Martini; P. Sotiropoulou; C. Michail; N. Kalyvas; I. Valais; A. Bakas; E. Kounadi; I. Kandarakis; G. Nikiforidis

Dual energy mammography has the ability to improve the detection of microcalcifications leading to early diagnosis of breast cancer. In this simulation study, a prototype dual energy mammography system, using a CMOS based imaging detector with different X-ray spectra, was modeled. The device consists of a 33.91 mg/cm2 Gd2O2S:Tb scintillator screen, placed in direct contact with the sensor, with a pixel size of 22.5 μm. Various filter materials and tube voltages of a Tungsten (W) anode for both the low and high energy were examined. The selection of the filters applied to W spectra was based on their K- edges (K-edge filtering). Hydroxyapatite (HAp) was used to simulate microcalcifications. Calcification signal-to-noise ratio (SNRtc) was calculated for entrance surface dose within the acceptable levels of conventional mammography. Optimization was based on the maximization of SNRtc while minimizing the entrance dose. The best compromise between SNRtc value and dose was provided by a 35kVp X-ray spectrum with added beam filtration of 100μm Pd and a 70kVp Yb filtered spectrum of 800 μm for the low and high energy, respectively. Computer simulation results show that a SNRtc value of 3.6 can be achieved for a calcification size of 200 μm. Compared with previous studies, this method can improve detectability of microcalcifications.


Journal of Physics: Conference Series | 2017

Resolution Properties of a Calcium Tungstate (CaWO4) Screen Coupled to a CMOS Imaging Detector

V. Koukou; N. Martini; I. Valais; A. Bakas; N. Kalyvas; Eleftherios Lavdas; G. Fountos; I. Kandarakis; C. Michail

The aim of the current work was to assess the resolution properties of a calcium tungstate (CaWO4) screen (screen coating thickness: 50.09 mg/cm2, actual thickness: 167.2 μm) coupled to a high resolution complementary metal oxide semiconductor (CMOS) digital imaging sensor. A 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor. Experiments were performed following the new IEC 62220-1-1:2015 International Standard, using an RQA-5 beam quality. Resolution was assessed in terms of the Modulation Transfer Function (MTF), using the slanted-edge method. The CaWO4/CMOS detector configuration was found with linear response, in the exposure range under investigation. The final MTF was obtained through averaging the oversampled edge spread function (ESF), using a custom-made software developed by our team, according to the IEC 62220-1-1:2015. Considering the renewed interest in calcium tungstate for various applications, along with the resolution results of this work, CaWO4 could be also considered for use in X-ray imaging devices such as charged-coupled devices (CCD) and CMOS.


Journal of Physics: Conference Series | 2017

Structural Characterization and Absolute Luminescence Efficiency Evaluation of Gd2O2S High Packing Density Ceramic Screens Doped with Tb3+ and Eu3+ for further Applications in Radiology

Anna Dezi; Elenasophie Monachesi; Michela D’Ignazio; Lorenzo Scalise; Luigi Montalto; Nicola Paone; D. Rinaldi; P. Mengucci; George Loudos; A. Bakas; C. Michail; I. Valais; Christine Fountzoula; G. Fountos; S. David

Rare earth activators are impurities added in the phosphor material to enhance probability of visible photon emission during the luminescence process. The main activators employed are rare earth trivalent ions such as Ce+3, Tb+3, Pr3+ and Eu+3. In this work, four terbium-activated Gd2O2S (GOS) powder screens with different thicknesses (1049 mg/cm2, 425.41 mg/cm2, 313 mg/cm2 and 187.36 mg/cm2) and one europium-activated GOS powder screen (232.18 mg/cm2) were studied to investigate possible applications for general radiology detectors. Results presented relevant differences in crystallinity between the GOS:Tb doped screens and GOS:Eu screens in respect to the dopant agent present. The AE (Absolute efficiency) was found to rise (i) with the increase of the X-ray tube voltage with the highest peaking at 110kVp and (ii) with the decrease of the thickness among the four GOS:Tb. Comparing similar thickness values, the europium-activated powder screen showed lower AE than the corresponding terbium-activated.


Journal of Physics: Conference Series | 2015

Image Quality Assessment of a CMOS/Gd2O2S:Pr,Ce,F X-ray Sensor

C. Michail; I E Seferis; T. Sideras; I. Valais; G. Fountos; A. Bakas; G. Panayiotakis; I. Kandarakis

The aim of the present study was to examine the image quality performance of a CMOS digital imaging optical sensor coupled to custom made gadolinium oxysulfide powder scintillators, doped with praseodymium, cerium and fluorine (Gd2O2S:Pr,Ce,F) screens. The screens, with coating thicknesses 35.7 and 71.2 mg/cm2, were prepared in our laboratory from Gd2O2S:Pr,Ce,F powder (Phosphor Technology, Ltd) by sedimentation on silica substrates and were placed in direct contact with the optical sensor. Image quality was determined through a single index image quality parameter (information capacity). The CMOS sensor/Gd2O2S:Pr,Ce,F screens combinations were irradiated under the RQA-5 (IEC 62220-1) beam quality. The detector response function was linear for the exposure range under investigation. Under the general radiography conditions, both Gd2O2S:Pr,Ce,F screen/CMOS combinations exhibited comparable overall imaging properties, in terms of the information capacity, to previously published scintillators, such as Gd2O2S:Eu.

Collaboration


Dive into the A. Bakas's collaboration.

Top Co-Authors

Avatar

C. Michail

Technological Educational Institute of Athens

View shared research outputs
Top Co-Authors

Avatar

G. Fountos

Technological Educational Institute of Athens

View shared research outputs
Top Co-Authors

Avatar

I. Kandarakis

Technological Educational Institute of Athens

View shared research outputs
Top Co-Authors

Avatar

I. Valais

Technological Educational Institute of Athens

View shared research outputs
Top Co-Authors

Avatar

N. Kalyvas

Technological Educational Institute of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Fountzoula

Technological Educational Institute of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge