Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Bansil is active.

Publication


Featured researches published by A. Bansil.


Nature Physics | 2009

Observation of a large-gap topological-insulator class with a single Dirac cone on the surface

Y. Xia; Dong Qian; David Hsieh; L. Wray; A. Pal; Hsin Lin; A. Bansil; D. Grauer; Yew San Hor; R. J. Cava; M. Z. Hasan

Y. Xia, 2 D. Qian, 3 D. Hsieh, 2 L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan 2 Department of Physics, Princeton University, Princeton, NJ 08544, USA Princeton Center for Complex Materials, Princeton University, Princeton, NJ 08544, USA Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China Department of Physics, Northeastern University, Boston, MA 02115, USA Department of Chemistry, Princeton University, Princeton, NJ 08544, USA (Dated: Submitted for publication in December 2008)


Nature | 2009

A tunable topological insulator in the spin helical Dirac transport regime

David Hsieh; Y. Xia; Dong Qian; L. Wray; J. H. Dil; F. Meier; Jürg Osterwalder; L. Patthey; Joseph Checkelsky; N. P. Ong; A. V. Fedorov; Hsin Lin; A. Bansil; D. Grauer; Yew San Hor; R. J. Cava; M. Z. Hasan

Helical Dirac fermions—charge carriers that behave as massless relativistic particles with an intrinsic angular momentum (spin) locked to its translational momentum—are proposed to be the key to realizing fundamentally new phenomena in condensed matter physics. Prominent examples include the anomalous quantization of magneto-electric coupling, half-fermion states that are their own antiparticle, and charge fractionalization in a Bose–Einstein condensate, all of which are not possible with conventional Dirac fermions of the graphene variety. Helical Dirac fermions have so far remained elusive owing to the lack of necessary spin-sensitive measurements and because such fermions are forbidden to exist in conventional materials harbouring relativistic electrons, such as graphene or bismuth. It has recently been proposed that helical Dirac fermions may exist at the edges of certain types of topologically ordered insulators—materials with a bulk insulating gap of spin–orbit origin and surface states protected against scattering by time-reversal symmetry—and that their peculiar properties may be accessed provided the insulator is tuned into the so-called topological transport regime. However, helical Dirac fermions have not been observed in existing topological insulators. Here we report the realization and characterization of a tunable topological insulator in a bismuth-based class of material by combining spin-imaging and momentum-resolved spectroscopies, bulk charge compensation, Hall transport measurements and surface quantum control. Our results reveal a spin-momentum locked Dirac cone carrying a non-trivial Berry’s phase that is nearly 100 per cent spin-polarized, which exhibits a tunable topological fermion density in the vicinity of the Kramers point and can be driven to the long-sought topological spin transport regime. The observed topological nodal state is shown to be protected even up to 300 K. Our demonstration of room-temperature topological order and non-trivial spin-texture in stoichiometric Bi2Se3.Mx (Mx indicates surface doping or gating control) paves the way for future graphene-like studies of topological insulators, and applications of the observed spin-polarized edge channels in spintronic and computing technologies possibly at room temperature.Princeton University, Princeton, NJ 08544, USA Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland Physik-Institut, Universität Zürich-Irchel, 8057 Zürich, Switzerland Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA Department of Physics, Northeastern University, Boston, MA 02115, USA Department of Chemistry, Princeton University, Princeton, NJ 08544, USA Princeton Center for Complex Materials, Princeton University, Princeton NJ 08544, USA


Science | 2015

Discovery of a Weyl Fermion semimetal and topological Fermi arcs

Su-Yang Xu; Ilya Belopolski; Nasser Alidoust; Madhab Neupane; Guang Bian; Chenglong Zhang; Raman Sankar; Guoqing Chang; Zhujun Yuan; Chi-Cheng Lee; Shin-Ming Huang; Hao Zheng; Ma J; Daniel S. Sanchez; Baokai Wang; A. Bansil; F. C. Chou; Pavel Shibayev; Hsin Lin; Shuang Jia; M. Z. Hasan

Weyl physics emerges in the laboratory Weyl fermions—massless particles with half-integer spin—were once mistakenly thought to describe neutrinos. Although not yet observed among elementary particles, Weyl fermions may exist as collective excitations in so-called Weyl semimetals. These materials have an unusual band structure in which the linearly dispersing valence and conduction bands meet at discrete “Weyl points.” Xu et al. used photoemission spectroscopy to identify TaAs as a Weyl semimetal capable of hosting Weyl fermions. In a complementary study, Lu et al. detected the characteristic Weyl points in a photonic crystal. The observation of Weyl physics may enable the discovery of exotic fundamental phenomena. Science, this issue p. 613 and 622 Angle-resolved photoemission is used to detect the topological surface states and bulk dispersion of the compound tantalum arsenide. [Also see Report by Lu et al.] A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles and admits a topological classification that protects Fermi arc surface states on the boundary of a bulk sample. This unusual electronic structure has deep analogies with particle physics and leads to unique topological properties. We report the experimental discovery of a Weyl semimetal, tantalum arsenide (TaAs). Using photoemission spectroscopy, we directly observe Fermi arcs on the surface, as well as the Weyl fermion cones and Weyl nodes in the bulk of TaAs single crystals. We find that Fermi arcs terminate on the Weyl fermion nodes, consistent with their topological character. Our work opens the field for the experimental study of Weyl fermions in physics and materials science.


Nature Nanotechnology | 2013

Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2

Yi Zhang; Tay-Rong Chang; Bo Zhou; Yong-Tao Cui; Hao Yan; Zhongkai Liu; F. Schmitt; James J. Lee; R. C. Moore; Yulin Chen; Hsin Lin; Horng-Tay Jeng; Sung-Kwan Mo; Zahid Hussain; A. Bansil; Zhi-Xun Shen

Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a large enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te), which are closely related to the indirect-to-direct bandgap transition in monolayers. Here, we report the first direct observation of the transition from indirect to direct bandgap in monolayer samples by using angle-resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. The band structure measured experimentally indicates a stronger tendency of monolayer MoSe2 towards a direct bandgap, as well as a larger gap size, than theoretically predicted. Moreover, our finding of a significant spin-splitting of ∼ 180 meV at the valence band maximum of a monolayer MoSe2 film could expand its possible application to spintronic devices.


Nature Communications | 2012

Topological crystalline insulators in the SnTe material class

T. H. Hsieh; Hsin Lin; Junwei Liu; Wenhui Duan; A. Bansil; Liang Fu

Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline insulator in the semiconductor SnTe by identifying its non-zero topological index. We predict that as a manifestation of this non-trivial topology, SnTe has metallic surface states with an even number of Dirac cones on high-symmetry crystal surfaces such as {001}, {110} and {111}. These surface states form a new type of high-mobility chiral electron gas, which is robust against disorder and topologically protected by reflection symmetry of the crystal with respect to {110} mirror plane. Breaking this mirror symmetry via elastic strain engineering or applying an in-plane magnetic field can open up a continuously tunable band gap on the surface, which may lead to wide-ranging applications in thermoelectrics, infra-red detection and tunable electronics. Closely related semiconductors PbTe and PbSe also become topological crystalline insulators after band inversion by pressure, strain and alloying.


Nature Materials | 2010

Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena

Hsin Lin; L. Andrew Wray; Y. Xia; Su-Yang Xu; Shuang Jia; R. J. Cava; A. Bansil; M. Zahid Hasan

Topological insulators (TI) realize a novel state of quantum matter that are distinguished by topological invariants of bulk band structure rather than spontaneously broken symmetries. A number of exotic quantum phenomena have been predicted to exist in multiply-connected geometries which require an enormous amount of materials flexibility. We have extended our previous search for TI materials from binary (Bi2X3 series) to the thermoelectric ternary compounds. We discover that the distorted LuPtSb is the first ternary compound harboring a 3D topological insulator state. We also show that the half-Heusler LuPtSb-type series is a natural platform that hosts a range of candidate compounds, alloys and artificial heterostructures (quantum-wells). We also discovered several different paradigms of trivial and non-trivial topological ordering in this class, including a metallic nontrivial topological state in YAuPb. Some of these materials are grown (results will be reported separately).Recent discovery of spin-polarized single-Dirac-cone insulators, whose variants can host magnetism and superconductivity, has generated widespread research activity in condensed-matter and materials-physics communities. Some of the most interesting topological phenomena, however, require topological insulators to be placed in multiply connected, highly constrained geometries with magnets and superconductors, all of which thus require a large number of functional variants with materials design flexibility as well as electronic, magnetic and superconducting tunability. Given the optimum materials, topological properties open up new vistas in spintronics, quantum computing and fundamental physics. We have extended the search for topological insulators from the binary Bi-based series to the ternary thermoelectric Heusler compounds. Here we show that, although a large majority of the well-known Heuslers such as TiNiSn and LuNiBi are rather topologically trivial, the distorted LnPtSb-type (such as LnPtBi or LnPdBi, Ln = f(n) lanthanides) compounds belonging to the half-Heusler subclass harbour Z(2) = -1 topological insulator parent states, where Z(2) is the band purity product index. Our results suggest that half-Heuslers provide a new platform for deriving a host of topologically exotic compounds and their nanoscale or thin-film device versions through the inherent flexibility of their lattice parameter, spin-orbit strength and magnetic moment tunability paving the way for the realization of multifunctional topological devices.


Nature Communications | 2015

A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class

Shin-Ming Huang; Su-Yang Xu; Ilya Belopolski; Chi-Cheng Lee; Guoqing Chang; Baokai Wang; Nasser Alidoust; Guang Bian; Madhab Neupane; Chenglong Zhang; Shuang Jia; A. Bansil; Hsin Lin; M. Zahid Hasan

The recent discoveries of Dirac fermions in graphene and on the surface of topological insulators have ignited worldwide interest in physics and materials science. A Weyl semimetal is an unusual crystal where electrons also behave as massless quasi-particles but interestingly they are not Dirac fermions. These massless particles, Weyl fermions, were originally considered in massless quantum electrodynamics but have not been observed as a fundamental particle in nature. A Weyl semimetal provides a condensed matter realization of Weyl fermions, leading to unique transport properties with novel device applications. Here, we THEORETICALLY identify the first Weyl semimetal in a class of stoichiometric materials (TaAs, NbAs, NbP, TaP), which break crystalline inversion symmetry, including TaAs, TaP, NbAs and NbP. Our first-principles calculation-based predictions on TaAs reveal the spin-polarized Weyl cones and Fermi arc surface states in this compound. We also observe pairs of Weyl points with the same chiral charge which project onto the same point in the surface Brillouin zone, giving rise to multiple Fermi arcs connecting to a given Weyl point. Our results show that TaAs is the first topological semimetal identified which does not depend on fine-tuning of chemical composition or magnetic order, greatly facilitating an exploration of Weyl physics in real materials. (Note added: This theoretical prediction of November 2014 (see paper in Nature Communications) was the basis for the first experimental discovery of Weyl Fermions and topological Fermi arcs in TaAs recently published in Science (2015) at this http URL)Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials.


Nature Physics | 2015

Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide

Su Yang Xu; Nasser Alidoust; Ilya Belopolski; Zhujun Yuan; Guang Bian; Tay-Rong Chang; Hao Zheng; V. N. Strocov; Daniel S. Sanchez; Guoqing Chang; Chenglong Zhang; Daixiang Mou; Yun Wu; Lunan Huang; Chi Cheng Lee; Shin-Ming Huang; Baokai Wang; A. Bansil; Horng-Tay Jeng; Titus Neupert; A. Kaminski; Hsin Lin; Shuang Jia; M. Zahid Hasan

We report the discovery of Weyl semimetal NbAs featuring topological Fermi arc surface states.


Nature Physics | 2011

A topological insulator surface under strong Coulomb, magnetic and disorder perturbations

L. Andrew Wray; Su-Yang Xu; Y. Xia; David Hsieh; A. V. Fedorov; Yew San Hor; R. J. Cava; A. Bansil; Hsin Lin; M. Zahid Hasan

Topological insulators embody a state of bulk matter characterized by spin-momentum-locked surface states that span the bulk bandgap. This highly unusual surface spin environment provides a rich ground for uncovering new phenomena. Understanding the response of a topological surface to strong Coulomb perturbations represents a frontier in discovering the interacting and emergent many-body physics of topological surfaces. Here we present the first controlled study of topological insulator surfaces under Coulomb and magnetic perturbations. We have used time-resolved deposition of iron, with a large Coulomb charge and significant magnetic moment, to systematically modify the topological spin structure of the Bi_2Se_3 surface. We observe that such perturbation leads to the creation of odd multiples of Dirac fermions and that magnetic interactions break time-reversal symmetry in the presence of band hybridizations. We present a theoretical model to account for the observed electron dynamics of the topological surface. Taken collectively, these results are a critical guide in controlling electron mobility and quantum behaviour of topological surfaces, not only for device applications but also in setting the stage for creating exotic particles such as axions or imaging monopoles on the surface.


Nature Communications | 2014

Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2

Madhab Neupane; Su Yang Xu; Raman Sankar; Nasser Alidoust; Guang Bian; Chang Liu; Ilya Belopolski; Tay-Rong Chang; Horng-Tay Jeng; Hsin Lin; A. Bansil; Fangcheng Chou; M. Zahid Hasan

Symmetry-broken three-dimensional (3D) topological Dirac semimetal systems with strong spin-orbit coupling can host many exotic Hall-like phenomena and Weyl fermion quantum transport. Here, using high-resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on Cd3As2, which has been predicted to be the parent material, from which many unusual topological phases can be derived. We observe a highly linear bulk band crossing to form a 3D dispersive Dirac cone projected at the Brillouin zone centre by studying the (001)-cleaved surface. Remarkably, an unusually high in-plane Fermi velocity up to 1.5×10(6) ms(-1) is observed in our samples, where the mobility is known up to 40,000 cm2 V(-1) s(-1), suggesting that Cd3As2 can be a promising candidate as an anisotropic-hypercone (three-dimensional) high spin-orbit analogue of 3D graphene. Our discovery of the Dirac-like bulk topological semimetal phase in Cd3As2 opens the door for exploring higher dimensional spin-orbit Dirac physics in a real material.Understanding the spin-texture behavior of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunneling-dependent evolution of spin configuration in topological insulator thin films across the metal-toinsulator transition. We observe strongly binding energyand wavevector-dependent spin polarization for the topological surface electrons in the ultra-thin gapped-Diraccone limit. The polarization decreases significantly with enhanced tunneling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model which captures this delicate relationship between quantum tunneling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nano-device.

Collaboration


Dive into the A. Bansil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsin Lin

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tay-Rong Chang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

M. Lindroos

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Horng-Tay Jeng

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge