A. Bazavov
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Bazavov.
Physical Review D | 2009
A. Bazavov; Tanmoy Bhattacharya; Michael Cheng; Norman H. Christ; Carleton DeTar; S. Ejiri; Steven Gottlieb; R. Gupta; U. M. Heller; Kay Huebner; Chulwoo Jung; Frithjof Karsch; Edwin Laermann; L. Levkova; C. Miao; Robert D. Mawhinney; Peter Petreczky; Christian Schmidt; R. A. Soltz; W. Soeldner; R. L. Sugar; D. Toussaint; Pavlos Vranas
We calculate the equation of state in
Physical Review Letters | 2012
A. Bazavov; H. T. Ding; P. Hegde; Olaf Kaczmarek; Frithjof Karsch; Edwin Laermann; Swagato Mukherjee; P. Petreczky; Christian Schmidt; D. Smith; W. Soeldner; Mathias Wagner
2+1
Physical Review D | 2010
A. Bazavov; C. Bernard; Carleton DeTar; Walter Freeman; Steven Gottlieb; U. M. Heller; James Edward Hetrick; J. Laiho; L. Levkova; M. B. Oktay; James C. Osborn; R. L. Sugar; D. Toussaint; R. S. Van De Water
flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent
Physical Review Letters | 2013
A. Bazavov; H. T. Ding; P. Hegde; Olaf Kaczmarek; Frithjof Karsch; Edwin Laermann; Y. Maezawa; Swagato Mukherjee; Hiroshi Ohno; P. Petreczky; Christian Schmidt; Sayantan Sharma; W. Soeldner; Mathias Wagner
{N}_{ensuremath{tau}}=8
Physical Review D | 2012
A. Bazavov; Tanmoy Bhattacharya; Michael I. Buchoff; Michael Cheng; Norman H. Christ; Heng-Tong Ding; Rajan Gupta; Prasad Hegde; Chulwoo Jung; Frithjof Karsch; Zhongjie Lin; Robert D. Mawhinney; Swagato Mukherjee; P. Petreczky; R. A. Soltz; Pavlos Vranas; Hantao Yin
. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two
arXiv: High Energy Physics - Lattice | 2010
A. Bazavov; Peter Petreczky
O({a}^{2})
Physical Review Letters | 2012
Jon A. Bailey; A. Bazavov; C. Bernard; C. M. Bouchard; Carleton E. DeTar; Daping Du; A.X. El-Khadra; J. Foley; E. D. Freeland; E. Gamiz; Steven Gottlieb; Urs M. Heller; Jongjeong Kim; A. S. Kronfeld; J. Laiho; L. Levkova; P.B. Mackenzie; Y. Meurice; E. T. Neil; M.B. Oktay; Si-Wei Qiu; J.N. Simone; R. Sugar; D. Toussaint; R. S. Van De Water; Ran Zhou
improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on
arXiv: High Energy Physics - Phenomenology | 2010
A. Bazavov; Walter Freeman; D. Toussaint; C. Bernard; J. Laiho; Carleton E. DeTar; L. Levkova; Steven Gottlieb; Urs M. Heller
{N}_{ensuremath{tau}}=6
Physical Review D | 2014
Jon A. Bailey; R. S. Van De Water; A. S. Kronfeld; P.B. Mackenzie; J.N. Simone; Si-Wei Qiu; E. T. Neil; J. Laiho; D. Toussaint; L. Levkova; Daping Du; A.X. El-Khadra; E. D. Freeland; A. Bazavov; Urs M. Heller; Steven Gottlieb; Ran Zhou; C. Bernard; Carleton DeTar; J. Foley; R. Sugar; E. Gamiz; C. M. Bouchard
and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we include an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects.
Physical Review D | 2010
A. Bazavov; D. Toussaint; C. Bernard; J. Laiho; B. Billeter; Carleton DeTar; L. Levkova; M. B. Oktay; Steven Gottlieb; U. M. Heller; James Edward Hetrick; James C. Osborn; R. L. Sugar; R. S. Van De Water
We present a determination of freeze-out conditions in heavy ion collisions based on ratios of cumulants of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. From a computation of up to fourth order cumulants and charge correlations we first determine the strangeness and electric charge chemical potentials that characterize freeze-out conditions in a heavy ion collision and confirm that in the temperature range 150 MeV ≤ T ≤ 170 MeV the hadron resonance gas model provides good approximations for these parameters that agree with QCD calculations on the 5%-15% level. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature.