Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Birol Kara is active.

Publication


Featured researches published by A. Birol Kara.


Journal of Geophysical Research | 2000

An optimal definition for ocean mixed layer depth

A. Birol Kara; Peter A. Rochford; Harley E. Hurlburt

A new method is introduced for determining ocean isothermal layer depth (ILD) from temperature profiles and ocean mixed layer depth (MLD) from density profiles that can be applied in all regions of the worlds oceans. This method can accommodate not only in situ data but also climatological data sets that typically have much lower vertical resolution. The sensitivity of the ILD and MLD to the temperature difference criteria used in the surface layer depth definition is discussed by using temperature and density data, respectively: (1) from 11 ocean weather stations in the northeast Pacific and (2) from the World Ocean Atlas 1994. Using these two data sets, a detailed statistical error analysis is presented for the ILD and MLD estimation by season. MLD variations with location due to temperature and salinity are properly accounted for in the defining density (Δσt) criterion. Overall, the optimal estimate of turbulent mixing penetration is obtained using a MLD definition of ΔT =0.8°0, although in the northeast Pacific region the optimal MLD criterion is found to vary seasonally. The method is shown to produce layer depths that are accurate to within 20 m or better in 85% or more of the cases. The MLD definition presented in this investigation accurately represents the depth to which turbulent mixing has penetrated and would be a useful aid for validation of one-dimensional bulk mixed layer models and ocean general circulation models with an embedded mixed layer.


Journal of Atmospheric and Oceanic Technology | 2000

Efficient and Accurate Bulk Parameterizations of Air–Sea Fluxes for Use in General Circulation Models

A. Birol Kara; Peter A. Rochford; Harley E. Hurlburt

Abstract Efficient and computationally inexpensive simple bulk formulas that include the effects of dynamic stability are developed to provide wind stress, and latent and sensible heat fluxes at the air–sea interface in general circulation models (GCMs). In these formulas the exchange coefficients for momentum and heat (i.e., wind stress drag coefficient, and latent and sensible heat flux coefficients, respectively) have a simple polynomial dependence on wind speed and a linear dependence on the air–sea temperature difference that are derived from a statistical analysis of global monthly climatologies according to wind speed and air–sea temperature difference intervals. Using surface meteorological observations from a central Arabian Sea mooring, these formulas are shown to yield air–sea fluxes on daily timescales that are highly accurate relative to those obtained with the standard algorithm used by the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE), where the ...


Journal of Geophysical Research | 2000

Mixed layer depth variability and barrier layer formation over the North Pacific Ocean

A. Birol Kara; Peter A. Rochford; Harley E. Hurlburt

Seasonal variability in the isothermal and isopycnal surface mixed layers of the North Pacific Ocean is examined using the Naval Research Laboratory Ocean Mixed Layer Depth (NMLD) Climatology. A comparison with observations from 11 ocean weather stations in the northeast Pacific Ocean is performed that validates the NMLD climatology in this region. The general features of the isothermal layer depth (ILD) and mixed layer depth (MLD) obtained from these mixed layers are explained with wind stress, surface net heat flux, and freshwater flux climatologies, given guidance from a mixed layer model. Departures from a surface-forced interpretation of turbulent mixing are found near the Kuroshio, where horizontal heat transport is important. The much deeper ILD in the northeast Pacific in winter and spring relative to the MLD reveals a 50 m “barrier layer” between the bottom of the MLD and the top of the thermocline. A detailed analysis shows this barrier layer extends over most of the North Pacific subpolar gyre. It forms when the seasonal thermocline is deepened in winter by surface cooling, such that salinity stratification due to evaporation minus precipitation less than zero (E - P <0) becomes important in the formation of the MLD. A shallower halocline forms over the subpolar gyre than in other regions of the North Pacific because of precipitation dominating over evaporation in the annual mean. A mechanism for maintaining the shallow halocline is provided by upward vertical motion driven by positive wind stress curl in the presence of diapycnal mixing. Numerical models show this as part of a shallow meridional overturning cell.


Journal of Atmospheric and Oceanic Technology | 2005

Stability-Dependent Exchange Coefficients for Air–Sea Fluxes*

A. Birol Kara; Harley E. Hurlburt; Alan J. Wallcraft

Abstract This study introduces exchange coefficients for wind stress (CD), latent heat flux (CL), and sensible heat flux (CS) over the global ocean. They are obtained from the state-of-the-art Coupled Ocean–Atmosphere Response Experiment (COARE) bulk algorithm (version 3.0). Using the exchange coefficients from this bulk scheme, CD, CL, and CS are then expressed as simple polynomial functions of air–sea temperature difference (Ta − Ts)—where air temperature (Ta) is at 10 m, wind speed (Va) is at 10 m, and relative humidity (RH) is at the air–sea interface—to parameterize stability. The advantage of using polynomial-based exchange coefficients is that they do not require any iterations for stability. In addition, they agree with results from the COARE algorithm but at ≈5 times lower computation cost, an advantage that is particularly needed for ocean general circulation models (OGCMs) and climate models running at high horizontal resolution and short time steps. The effects of any water vapor flux in calcu...


Journal of Geophysical Research | 2001

Importance of solar subsurface heating in ocean general circulation models

Peter A. Rochford; A. Birol Kara; Alan J. Wallcraft; Robert A. Arnone

The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4–5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m−1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.


Journal of Physical Oceanography | 2005

Sea surface temperature sensitivity to water turbidity from simulations of the turbid Black Sea using HYCOM

A. Birol Kara; Alan J. Wallcraft; Harley E. Hurlburt

This paper examines the sensitivity of sea surface temperature (SST) to water turbidity in the Black Sea using the eddy-resolving (;3.2-km resolution) Hybrid Coordinate Ocean Model (HYCOM), which includes a nonslab K-profile parameterization (KPP) mixed layer model. The KPP model uses a diffusive attenuation coefficient of photosynthetically active radiation ( kPAR) processed from a remotely sensed dataset to take water turbidity into account. Six model experiments (expt) are performed with no assimilation of any ocean data and wind/thermal forcing from two sources: 1) European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA) and 2) Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS). Forced with ECMWF, experiment 1 uses spatially and monthly varying kPAR values over the Black Sea, experiment 2 assumes all of the solar radiation is absorbed at the sea surface, and experiment 3 uses a constant kPAR value of 0.06 m21, representing clear-water constant solar attenuation depth of 16.7 m. Experiments 4, 5, and 6 are twins of 1, 2, and 3 but forced with NOGAPS. The monthly averaged model SSTs resulting from all experiments are then compared with a fine-resolution (;9 km) satellite-based monthly SST climatology (the Pathfinder climatology). Because of the high turbidity in the Black Sea, it is found that a clear-water constant attenuation depth (i.e., expts 3 and 6) results in SST bias as large as 3 8 Ci n comparison with standard simulations (expts 1 and 4) over most of the Black Sea in summer. In particular, when using the clear-water constant attenuation depth as opposed to using spatial and temporal kPAR, basin-averaged rms SST difference with respect to the Pathfinder SST climatology increases ;46% (from 1.418C in expt 1 to 2.068C in expt 3) in the ECMWF forcing case. Similarly, basin-averaged rms SST difference increases ;36% (from 1.398C in expt 4 to 1.898C in expt 6) in the NOGAPS forcing case. The standard HYCOM simulations (expts 1 and 4) have a very high basin-averaged skill score of 0.95, showing overall model success in predicting climatological SST, even with no assimilation of any SST data. In general, the use of spatially and temporally varying turbidity fields is necessary for the Black Sea OGCM studies because there is strong seasonal cycle and large spatial variation in the solar attenuation coefficient, and an additional simulation using a constant kPAR value of 0.19 m21, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) space‐time mean for the Black Sea, did not yield as accurate SST results as experiments 1 and 4. Model‐data comparisons also revealed that relatively large HYCOM SST errors close to the coastal boundaries can be attributed to the misrepresentation of land‐ sea mask in the ECMWF and NOGAPS products. With the relatively accurate mask used in NOGAPS, HYCOM demonstrated the ability to simulate accurate SSTs in shallow water over the broad northwest shelf in the Black Sea, a region of large errors using the inaccurate mask in ECMWF. A linear relationship is found between changes in SST and changes in heat flux below the mixed layer. Specifically, a change of ; 50 Wm 22 in submixed-layer heat flux results in a SST change of ;3.08C, a value that occurs when using clear-water constant attenuation depth rather than monthly varying kPAR in the model simulations, clearly demonstrating potential impact of penetrating solar radiation on SST simulations.


Journal of Atmospheric and Oceanic Technology | 2003

The NRL Layered Global Ocean Model (NLOM) with an Embedded Mixed Layer Submodel: Formulation and Tuning*

Alan J. Wallcraft; A. Birol Kara; Harley E. Hurlburt; Peter A. Rochford

Abstract A bulk-type (modified Kraus–Turner) mixed layer model that is embedded within the Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) is introduced. It is an independent submodel loosely coupled to NLOMs dynamical core, requiring only near-surface currents, the temperature just below the mixed layer, and an estimate of the stable mixed layer depth. Coupling is achieved by explicitly distributing atmospheric forcing across the mixed layer (which can span multiple dynamic layers), and by making the heat flux and thermal expansion of seawater dependent upon the mixed layer models sea surface temperature (SST). An advantage of this approach is that the relative independence of the dynamical solution from the mixed layer allows the initial state for simulations with the mixed layer to be defined from existing near-global model simulations spun up from rest without a mixed layer (requiring many hundreds of model years). The goal is to use the mixed layer model in near-global multidecadal simul...


Journal of Physical Oceanography | 2005

A New Solar Radiation Penetration Scheme for Use in Ocean Mixed Layer Studies: An Application to the Black Sea Using a Fine-Resolution Hybrid Coordinate Ocean Model (HYCOM)*

A. Birol Kara; Alan J. Wallcraft; Harley E. Hurlburt

A 1/25° 1/25° cos(lat) (longitude latitude) (3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, , and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbi d( kPAR 0.15 m 1 , in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of 17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.


Journal of Physical Oceanography | 2004

The Impact of Water Turbidity on Interannual Sea Surface Temperature Simulations in a Layered Global Ocean Model

A. Birol Kara; Harley E. Hurlburt; Peter A. Rochford; James J. O'Brien

Abstract The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) with an embedded bulk-type mixed layer model is used to examine the effects of ocean turbidity on sea surface temperature (SST) and ocean mixed layer depth (MLD) simulations over the global ocean. The model accounts for ocean turbidity through depth-dependent attenuation of solar radiation in the mixed layer formulation as determined from the diffusive attenuation coefficient at 490 nm (k490) obtained by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). Interannual model simulations are used to assess the first-order effects of ocean turbidity on SST and MLD simulation. Results are reported from three model experiments performed using different values for the attenuation of photosynthetically available radiation (kPAR). It is shown that, although allowing incoming solar radiation to vary in time and space is desirable for predicting SST, in an OGCM use of a constant kPAR with a value of 0.06 m−1 is generally sufficient in the deep ...


Journal of Atmospheric and Oceanic Technology | 2003

Climatological SST and MLD Predictions from a Global Layered Ocean Model with an Embedded Mixed Layer

A. Birol Kara; Alan J. Wallcraft; Harley E. Hurlburt

The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) with an embedded mixed layer submodel is used to predict the climatological monthly mean sea surface temperature (SST) and surface ocean mixed layer depth (MLD) over the global ocean. The thermodynamic model simulations presented in this paper are performed using six dynamical layers plus the embedded mixed layer at 1/28 resolution in latitude and 0.7031258 in longitude, globally spanning from 728 St o 658N. These model simulations use climatological wind and thermal forcing and include no assimilation of SST or MLD data. To measure the effectiveness of the NLOM mixed layer, the annual mean and seasonal cycle of SST and MLD obtained from the model simulations are compared to those from different climatological datasets at each grid point over the global ocean. Analysis of the global error maps shows that the embedded mixed layer in NLOM gives accurate SST with atmospheric forcing even with no SST relaxation/assimilation. In this case the model gives a global root-mean-square (rms) difference of 0.378C for the annual mean and 0.598C over the seasonal cycle over the global ocean. The mean global correlation coefficient (R) is 0.91 for the seasonal cycle of the SST. NLOM predicts SST with an annual mean error of ,0.58C in most of the North Atlantic and North Pacific Oceans. For the MLD the model gave a global rms difference of 34 m for the annual mean and 63 m over the seasonal cycle over the global ocean in comparison to the NRL MLD climatology (NMLD). The mean global R value is 0.62 for the seasonal cycle of the MLD. Additional model‐data comparisons use climatological monthly mean SST time series from 18 National Oceanic Data Center (NODC) buoys and 11 ocean weather station (OWS) hydrographic locations in the North Pacific Ocean. The median rms difference between the NLOM SSTs and SSTs at these 29 locations is 0.498C for the seasonal cycle. Deepening and shallowing of the MLD at the all OWS locations in the northeast Pacific are captured by the model with an rms difference of ,20 m and an R value of .0.85 for the seasonal cycle. Using several statistical measures and climatologies of SST and MLD we have demonstrated that NLOM with an embedded mixed layer is able to simulate with substantial skill the climatological SST and MLD when using accurate and computationally efficient surface heat flux and solar radiation attenuation parameterizations over the global ocean. Further, this was accomplished using a model with only seven layers in the vertical, including the embedded mixed layer. Success of climatological predictions from the NLOM with an embedded mixed layer is a prerequisite for simulations using interannual atmospheric forcing with high temporal resolution. NLOM gives accurate upper-ocean quantities with atmospheric forcing even with no SST relaxation or assimilation, a strong indication that the model is a good candidate for assimilation of SST data. Finally, the techniques and datasets used here can be applied to evaluation of other ocean models in predicting the SST and MLD.

Collaboration


Dive into the A. Birol Kara's collaboration.

Top Co-Authors

Avatar

Harley E. Hurlburt

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlie N. Barron

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. Joseph Metzger

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Helber

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Robert C. Rhodes

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lucy F. Smedstad

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge