Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Bortolon is active.

Publication


Featured researches published by A. Bortolon.


Nuclear Fusion | 2007

Inter-machine comparison of intrinsic toroidal rotation in tokamaks

J. E. Rice; A. Ince-Cushman; J.S. deGrassie; L.-G. Eriksson; Y. Sakamoto; A. Scarabosio; A. Bortolon; K.H. Burrell; B.P. Duval; C. Fenzi-Bonizec; M. Greenwald; Richard J. Groebner; G. T. Hoang; Y. Koide; E. Marmar; A. Pochelon; Y. Podpaly

Parametric scalings of the intrinsic (spontaneous, with no external momentum input) toroidal rotation observed on a large number of tokamaks have been combined with an eye towards revealing the underlying mechanism(s) and extrapolation to future devices. The intrinsic rotation velocity has been found to increase with plasma stored energy or pressure in JET, Alcator C-Mod, Tore Supra, DIII-D, JT-60U and TCV, and to decrease with increasing plasma current in some of these cases. Use of dimensionless parameters has led to a roughly unified scaling with M-A alpha beta(N), although a variety of Mach numbers works fairly well; scalings of the intrinsic rotation velocity with normalized gyro-radius or collisionality show no correlation. Whether this suggests the predominant role of MHD phenomena such as ballooning transport over turbulent processes in driving the rotation remains an open question. For an ITER discharge with beta(N) = 2.6, an intrinsic rotation Alfven Mach number of M-A similar or equal to 0.02 may be expected from the above deduced scaling, possibly high enough to stabilize resistive wall modes without external momentum input.


Plasma Physics and Controlled Fusion | 2006

Toroidal plasma rotation in the TCV tokamak

A. Scarabosio; A. Bortolon; B.P. Duval; A. Pochelon

The first toroidal rotation measurements in TCV ohmic L-mode plasmas with no external momentum injection are presented. The toroidal velocity profile of the fully stripped carbon species is measured by active Charge eXchange Recombination Spectroscopy with a temporal resolution of typically 90 ms and a spatial resolution of 2.5 cm, about 1/10 of the plasma radius. The observed carbon velocity is of the order of the deuterium diamagnetic drift velocity and up to 1/5 of the deuterium thermal velocity. It is directed opposite to plasma current in the electron diamagnetic toroidal drift direction. The profile reverses when reversing the plasma current. The angular velocity profile is flat, or hollow, inside the sawtooth inversion radius and decreases quasi linearly towards the plasma edge. By vertically shifting the plasma magnetic axis within the TCV vessel the plasma edge velocity profile was measured with high resolution. Such experiments confirm that, close to the limiter, the stationary rotation velocity is close to zero or somewhat positive (co-current directed). This suggests that the angular momentum is not driven from the plasma edge. The maximum carbon velocity scales as v(phi,Max) [km s(-1)] = -12.5T(i)/I-p [eV/kA] for a significant range of densities and values of the edge safety factor. Comparison with neoclassical predictions show that the TCV plasma rotation is mainly driven by radial electric fields, with a negligible contribution from the toroidal electric fields. The neoclassical theory of small toroidal rotation quantitatively and qualitatively disagrees with the experimental observation. An alternative empirical equation for the angular momentum flux, able to reproduce the measured stationary profile outside the inversion radius, is proposed.


Plasma Physics and Controlled Fusion | 2007

Bulk plasma rotation in the TCV tokamak in the absence of external momentum input

B.P. Duval; A. Bortolon; R.A. Pitts; A. Pochelon; A. Scarabosio

Theoretical approaches to low-frequency magnetized turbulence in collisionless and weakly collisional astrophysical plasmas are reviewed. The proper starting point for an analytical description of these plasmas is kinetic theory, not fluid equations. The anisotropy of the turbulence is used to systematically derive a series of reduced analytical models. Above the ion gyroscale, it is shown rigourously that the Alfvén waves decouple from the electron-density and magnetic-field-strength fluctuations and satisfy the reduced MHD equations. The density and field-strength fluctuations (slow waves and the entropy mode in the fluid limit), determined kinetically, are passively mixed by the Alfvén waves. The resulting hybrid fluid-kinetic description of the low-frequency turbulence is valid independently of collisionality. Below the ion gyroscale, the turbulent cascade is partially converted into a cascade of kinetic Alfvén waves, damped at the electron gyroscale. This cascade is described by a pair of fluid-like equations, which are a reduced version of the electron MHD. The development of these theoretical models is motivated by observations of the turbulence in the solar wind and interstellar medium. In the latter case, the turbulence is spatially inhomogeneous and the anisotropic Alfvénic turbulence in the presence of a strong mean field may coexist with isotropic MHD turbulence that has no mean field.Note: This is a zip file with two parts Reference CRPP-CONF-2007-076 URL: http://www.eps2007.ifpilm.waw.pl/ Record created on 2008-05-13, modified on 2017-05-12


Nuclear Fusion | 2007

Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas

Y. Camenen; A. Pochelon; R. Behn; A. Bottino; A. Bortolon; S. Coda; O. Sauter; G. Zhuang

The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of −0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated.


Nuclear Fusion | 2007

Plasma dynamics with second and third-harmonic ECRH and access to quasi-stationary ELM-free H-mode on TCV

L. Porte; S. Coda; S. Alberti; G. Arnoux; P. Blanchard; A. Bortolon; A. Fasoli; T. P. Goodman; Y. Klimanov; Y. Martin; M. Maslov; A. Scarabosio; H. Weisen

Intense electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) are employed on the Tokamak a Configuration Variable (TCV) both in second- and third-harmonic X-mode (X2 and X3). The plasma behaviour under such conditions is driven largely by the electron dynamics, motivating extensive studies of the heating and relaxation phenomena governing both the thermal and suprathermal electron populations. In particular, the dynamics of suprathermal electrons are intimately tied to the physics of X2 ECCD. ECRH is also a useful tool for manipulating the electron distribution function in both physical and velocity space. Fundamental studies of the energetic electron dynamics have been performed using periodic, low-duty-cycle bursts of ECRH, with negligible average power injection, and with electron cyclotron emission (ECE). The characteristic times of the dynamical evolution are clearly revealed. Suprathermal electrons have also been shown to affect the absorption of X3 radiation. Thermal electrons play a crucial role in high density plasmas where indirect ion heating can be achieved through ion-electron collisions. In recent experiments approximate to 1.35 MW of vertically launched X3 ECRH was coupled to a diverted ELMy H-mode plasma. In cases where >= 1.1 MW of ECRH power was coupled, the discharge was able to transition into a quasi-stationary ELM-free H-mode regime. These H-modes operated at beta(N) approximate to 2, (n) over bar (e)/n(G) approximate to 0.25 and had high energy confinement, H-IPB98(y,H-2) up to approximate to 1.6. Despite being purely electron heated and having no net particle source these discharges maintained a density peaking factor (n(e,o)/ approximate to 1.6). They also exhibited spontaneous toroidal momentum production in the co-current direction. The momentum production is due to a transport process as there is no external momentum input. This process supports little or no radial gradient of the toroidal velocity.


Plasma Physics and Controlled Fusion | 2017

Experimental observations and modelling of intrinsic rotation reversals in tokamaks

Y. Camenen; C. Angioni; A. Bortolon; B.P. Duval; E. Fable; W. A. Hornsby; R. M. McDermott; D. H. Na; Y.-S. Na; A. G. Peeters; J.E. Rice

The progress made in understanding spontaneous toroidal rotation reversals in tokamaks is reviewed and current ideas to solve this ten-year-old puzzle are explored. The paper includes a summarial synthesis of the experimental observations in AUG, C-Mod, KSTAR, MAST and TCV tokamaks, reasons why turbulent momentum transport is thought to be responsible for the reversals, a review of the theory of turbulent momentum transport and suggestions for future investigations.


Third IAEA Technical Meeting on ECRH Physics and Technology for ITER | 2005

Third-harmonic X-mode, real-time controlled top-launch ECW experiments on TCV Tokamak

S. Alberti; G. Arnoux; L. Porte; A. Bortolon; Y. Martin; S. Nowak; R.A. Pitts

In the moderate magneticfield of TCV (1.5T), the recently installed X3 system (3 gyrotrons @118 GHz, 0.45 MW/each, 2s) broadens the operational space with the possibility of heating plasmas at high density, well above the cutoff density of the X2 system (X2 cutoff at ne = 4.2 × 1019m-3). To compensate the significantly weaker absorption coefficient compared to the absorption of X2, the top-launch injection allows to maximize the ray path along the resonance layer thus maximizing the optical depth. To maintain the maximum absorption in plasma discharges with a dynamic variation of both density (refraction) and temperature (relativistic shift) a real time control system on the poloidal injection angle has been developped and succesfully tested on TCV. With a total injected power of 1.35 MW and using the mirror realtime control, full-single pass absorption has been measured in an L-mode plasma. A significant fraction of the absorbed power is associated to the presence of suprathermal electrons generated by the X3 wave itself. In X3 heating experiments of H-mode plasmas it has been possible to enter into a different ELMy regime compared to the ohmic/low-power-heating ELMy regime. In these experiments a significant increase of the plasma energy is obtained with nearly fullsingle pass absorption. Results on the comparison of the absorbed fraction calculated with the TORAY-GA ray-tracing code and the beam-tracing code, ECWGB, which includes difiraction effects, are discussed.


Physical Review Letters | 2006

Observation of Spontaneous Toroidal Rotation Inversion in Ohmically Heated Tokamak Plasmas

A. Bortolon; B.P. Duval; A. Pochelon; Andrea Scarabosio


Physical Review Letters | 2010

Experimental Evidence of Momentum Transport Induced by an Up-Down Asymmetric Magnetic Equilibrium in Toroidal Plasmas

Y. Camenen; A. Bortolon; B.P. Duval; L. Federspiel; A. G. Peeters; F. J. Casson; W. A. Hornsby; F. Piras; O. Sauter; A. P. Snodin; G. Szepesi


Fusion Engineering and Design | 2014

Development of real-time plasma analysis and control algorithms for the TCV tokamak using Simulink

Faa Federico Felici; H.B. Le; Ji Paley; B.P. Duval; S. Coda; J.-M. Moret; A. Bortolon; L. Federspiel; T. P. Goodman; G. Hommen; F. Piras; Andreas Pitzschke; J.A. Romero; G. Sevillano; O. Sauter; W. Vijvers

Collaboration


Dive into the A. Bortolon's collaboration.

Top Co-Authors

Avatar

B.P. Duval

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

A. Pochelon

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

O. Sauter

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

A. Scarabosio

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Y. Camenen

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

S. Coda

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Porte

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

R. Behn

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge