Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Bouzas is active.

Publication


Featured researches published by A. Bouzas.


Water Research | 2010

Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation

N. Martí; L. Pastor; A. Bouzas; J. Ferrer; A. Seco

Phosphorus recovery by struvite (MgNH(4)PO(4).6H(2)O) crystallization is one of the most widely recommended technologies for treating sludge digester liquors especially in wastewater treatments plants (WWTP) with enhanced biological phosphorus removal (EBPR). In this paper, phosphorus recovery by struvite crystallization is assessed using the rejected liquors resulting from four different operational strategies of the sludge treatment line. Phosphorus precipitation and recovery efficiencies of between 80-90% and 70-85%, respectively, were achieved in the four experiments. The precipitates formed were mainly struvite, followed by amorphous calcium phosphate and, in some experiments, by calcite. The highest global phosphorus recovery taking into account both the sludge line and the crystallizer was achieved when mixed thickening and high elutriation were carried out (8.4 gP/kg treated sludge). However, low struvite content was obtained in the crystallizer with this operation scheme due to the high calcium content in the elutriation stream. Therefore, if the final purpose is to obtain struvite, the reduction of the elutriation flowrate is widely recommended in the case of high water hardness.


Marine Pollution Bulletin | 2011

Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain

N. Martí; D. Aguado; L. Segovia-Martínez; A. Bouzas; A. Seco

A comprehensive study aimed at evaluating the occurrence, significance of concentrations and spatial distribution of priority pollutants (PPs) along the Comunidad Valenciana coastal waters (Spain) was carried out in order to fulfil the European Water Framework Directive (WFD). Additionally, PP concentrations were also analysed in the effluent of 28 WWTPs distributed along the studied area. In coastal waters 36 organic pollutants of the 71 analysed, including 26 PPs were detected although many of them with low frequency of occurrence. Only 13 compounds, which belong to four different classes (VOCs, organochlorinated pesticides, phthalates and tributyltin compounds (TBT)) showed a frequency of occurrence above 20% in coastal waters. In the results obtained until now, octylphenol, pentachlorobenzene, DEHP and TBT exceeded the annual average concentration (EQS-AAC), and only TBT surpassed the maximum allowable concentration (EQS-MAC). The most frequent contaminants determined in coastal waters were also present in WWTP effluents.


Journal of Environmental Management | 2009

Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: a case study in Murcia, Spain.

R. Barat; A. Bouzas; N. Martí; J. Ferrer; A. Seco

The Murcia Este Wastewater Treatment Plant is the largest wastewater treatment plant in Murcia (Spain). The plant operators have continuously found pipe blockage and accumulation of solids on equipment surfaces during the anaerobic digestion and post-digestion processes. This work studies the precipitation problems in the Murcia Este Wastewater Treatment Plant in order to locate the sources of precipitation and its causes from an exhaustive mass balance analysis. The DAF thickener and anaerobic digester mass balances suggest that most of the polyphosphate is released during excess sludge thickening. Despite the high concentrations achieved in the thickened sludge, precipitation does not occur at this point due to the low pH. The increases in ammonium and pH during anaerobic digestion cause precipitation to take place mainly inside the digesters and in downstream processes. This study shows that 50.7% of the available phosphate is fixed in the digester of which 52.0% precipitates as ammonium struvite, 39.2% precipitates as hydroxyapatite and the remaining 8.8% is adsorbed on the surface of the solids. Thermodynamic calculations confirm the precipitation of struvite and hydroxyapatite and also confirm that potassium struvite does not precipitate in the anaerobic digesters.


Water Research | 2008

Optimisation of sludge line management to enhance phosphorus recovery in WWTP

N. Martí; J. Ferrer; A. Seco; A. Bouzas

The management of the sludge treatment line can be optimized to reduce uncontrolled phosphorus precipitation in the anaerobic digester and to enhance phosphorus recovery in WWTP. In this paper, four operational strategies, which are based on the handling of the prefermented primary sludge and the secondary sludge from an EBPR process, have been tested in a pilot plant. The separated or mixed sludge thickening, the use of a stirred contact tank and the elutriation of the thickened sludge are the main strategies studied. Both the reduction of phosphorus precipitation in the digester and the supernatant suitability for a struvite crystallization process were assessed in each configuration. The mixed sludge thickening combined with a high flowrate elutriation stream reduced the phosphorus precipitation in the digester by 46%, with respect to the separate sludge thickening configuration (common practice in WWTP). Moreover, in this configuration, 68% of the soluble phosphorus in the system is available for a possible phosphorus recovery process by crystallization (not studied in this work). However, a high Ca/P molar ratio was detected in the resultant supernatant which is pointed out as a problem for the efficiency of struvite crystallization.


Water Science and Technology | 2012

Micropollutants removal in an anaerobic membrane bioreactor and in an aerobic conventional treatment plant.

M. R. Abargues; A. Robles; A. Bouzas; A. Seco

The paper expresses an attempt to tackle the problem due to the presence of micropollutants in wastewater which may be able to disrupt the endocrine system of some organisms. These kinds of compounds are ubiquitously present in municipal wastewater treatment plant (WWTP) effluents. The aim of this paper is to compare the fate of the alkylphenols-APs (4-(tert-octyl)) phenol, t-nonylphenol and 4-p-nonylphenol and the hormones (estrone, 17β-estradiol and 17α-ethinylestradiol) in a submerged anaerobic membrane bioreactor (SAMBR) pilot plant and in a conventional activated sludge wastewater treatment plant (CTP). The obtained results are also compared with the results obtained in a previous study carried out in an aerobic MBR pilot plant. The results showed that the APs soluble concentrations in the SAMBR effluent were always significantly higher than the CTP ones. Moreover, the analyses of the suspended fraction revealed that the AP concentrations in the SAMBR reactor were usually higher than in the CTP reactor, indicating that under anaerobic conditions the APs were accumulated in the digested sludge. The aerobic conditions maintained both in the CTP system and in the aerobic MBR favoured the APs and hormones degradation, and gave rise to lower concentrations in the effluent and in the reactor of these systems. Furthermore, the results also indicated that the degradation of APs under aerobic conditions was enhanced working at high solid retention time (SRT) and hydraulic retention time (HRT) values.


Bioresource Technology | 2013

Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae

M. R. Abargues; J. Ferrer; A. Bouzas; A. Seco

The aim of this study was to assess the effect of light, oxygen and microalgae on micropollutants removal. The studied micropollutants were 4-(1,1,3,3-tetramethylbutyl)phenol (OP), technical-nonylphenol (t-NP), 4-n-nonylphenol (4-NP), Bisphenol-A (BPA). In order to study the effect of the three variables on the micropollutants removal, a factorial design was developed. The experiments were carried out in four batch reactors which treated the effluent of an anaerobic membrane bioreactor. The gas chromatography mass spectrometry was used for the measurement of the micropollutants. The results showed that light, oxygen and microalgae affected differently to the degradation ratios of each micropollutant. The results showed that under aerated conditions removal ratios higher than 91% were achieved, whereas for non-aerated conditions the removal ratios were between 50% and 80%, except for 4-NP which achieved removal ratios close to 100%. Besides, mass balance showed that the degradation processes were more important than the sorption processes.


Journal of Environmental Management | 2015

Treatment of a submerged anaerobic membrane bioreactor (SAnMBR) effluent by an activated sludge system: The role of sulphide and thiosulphate in the process

J.E. Sánchez-Ramírez; A. Seco; J. Ferrer; A. Bouzas; F. García-Usach

This work studies the use of a well-known and spread activated sludge system (UCT configuration) to treat the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) treating domestic wastewater. Ammonia, phosphate, dissolved methane and sulphide concentrations in the SAnMBR effluent were around 55 mg NH4-N L(-1), 7 mg PO4-P L(-1), 30 mg non-methane biodegradable COD L(-1), and 105 mg S(2-) L(-1) respectively. The results showed a nitrification inhibition caused by the presence of sulphur compounds at any of the solids retention time (SRT) studied (15, 20 and 25 days). This inhibition could be overcome increasing the hydraulic retention time (HRT) from 13 to 26 h. Among the sulphur compounds, sulphide was identified as the substance which caused the nitrification inhibition. When the nitrification was well established, removal rates of nitrogen and phosphorus of 56% and 45% were reached respectively. The sulphide present in the influent was completely oxidised to sulphate, contributing this oxidation to the denitrification process. Moreover, the presence of methanotrophic bacteria, detected by FISH technique, could also contribute to the denitrification.


Environmental Science: Water Research & Technology | 2018

Fate of endocrine disruptor compounds in an anaerobic membrane bioreactor (AnMBR) coupled to an activated sludge reactor

M. R. Abargues; J. Ferrer; A. Bouzas; A. Seco

The occurrence and fate of three groups of micropollutants – alkylphenols, pentachlorophenol and hormones – were studied in a pilot plant consisting of an anaerobic membrane bioreactor (AnMBR) coupled to an activated sludge reactor (University of Cape Town configuration – UCT). Under anaerobic conditions, the octylphenol and technical-nonylphenol soluble concentrations increased producing negative degradation ratios (i.e., −175 and −118%, respectively). However, high 4-n-nonylphenol and bisphenol-A degradation ratios (92 and 59% for 4-n-nonylphenol and bisphenol-A, respectively) as well as complete pentachlorophenol, estrone, 17β-estradiol and 17α-ethinylestradiol removal were observed. Under aerobic conditions (UCT), octylphenol, technical-nonylphenol, 4-n-nonylphenol and bisphenol-A degradation ratios were higher than 84%. The AnMBR thus removes a high proportion of 4-n-nonylphenol, pentachlorophenol, estrone, 17β-estradiol and 17α-ethinylestradiol, but requires a later post-treatment process (such as UCT) to improve bisphenol-A, octylphenol and technical-nonylphenol degradation ratios. The overall AnMBR–UCT degradation ratios were 48% and 70% for octylphenol and technical-nonylphenol, respectively, and higher than 97% for 4-n-nonylphenol and bisphenol-A. The AnMBR produced a higher micropollutant accumulation in the sludge than the UCT: removal by adsorption in the AnMBR process was between 0.5 and 10%, and less than 0.5% in the UCT process. The combination of AnMBR and UCT technologies produces an effluent stream with low concentrations of micropollutants.


Bioresource Technology | 2018

Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand

J.B. Giménez; A. Bouzas; Hélène Carrère; Jean-Philippe Steyer; J. Ferrer; A. Seco

In the present study, the effect of cross-flow filtration (CFF) on the overall valorization of Chlorella spp. microalgae as biogas was assessed. The effect of CFF on microalgae cell integrity was quantified in terms of viability which was correlated with the anaerobic biodegradability. The viability dropped as the biomass concentration increased, whereas anaerobic biodegradability increased linearly with the viability reduction. It was hypothesized that a stress-induced release and further accumulation of organic polymers during CFF increased the flux resistance which promoted harsher shear-stress conditions. Furthermore, the volume reduction as the concentration increased entailed an increase in the specific energy supply to the biomass. The energy demand was positive in the whole range of concentrations studied, yielding an overall energy efficiency as high as 22.9% for the highest concentration studied. Specifically, heat requirements were lower than electricity requirements only when the biomass concentrations exceeded 10 g COD·L-1.


Revista Ingeniería y Región | 2014

Identificación de bacterias filamentosas Thiothrix en el tratamiento del efluente de un reactor anaerobio de membranas sumergidas (SAnMBR)

Javier E. Sánchez-Ramírez; A. Bouzas; María Francisca García-Usach; L. Borrás; A. Seco

En el tratamiento biologico de aguas residuales participan diversos microorganismos entre los que se encuentran las bacterias filamentosas. El crecimiento excesivo e incontrolado de estos microorganismos genera problemas asociados al esponjamiento de los fangos conocido como bulking y la formacion de espumas o foaming . La correcta identificacion de estos organismos tiene un papel importante en la toma de decisiones para la correcta operacion de las plantas de tratamiento de agua residual. Los tratamientos anaerobios empleados para el tratamiento de aguas residuales urbanas e industriales, con un contenido alto de sulfatos en el afluente, generan efluentes que contienen concentraciones importantes de sulfuro que bajo determinadas condiciones pueden favorecer la aparicion de organismos filamentosos. En este trabajo se usan tecnicas microbiologicas convencionales y moleculares para la identificacion de bacterias filamentosas ( Thiothrix ) asociadas a un problema de decantacion en un sistema de fangos activados que trata el agua efluente de un reactor anaerobio de membranas sumergidas (SAnMBR) con concentraciones elevadas de sulfuro (105 ± 10 mg S·L-1). En este estudio se comparan dos periodos de operacion con el fin de determinar la influencia del tiempo de retencion hidraulico (TRH) sobre la proliferacion de las bacterias filamentosas Thiothrix.

Collaboration


Dive into the A. Bouzas's collaboration.

Top Co-Authors

Avatar

A. Seco

University of Valencia

View shared research outputs
Top Co-Authors

Avatar

J. Ferrer

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

N. Martí

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Aguado

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. García-Usach

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Pastor

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

R. Barat

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge