Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Boveris is active.

Publication


Featured researches published by A. Boveris.


Biochimica et Biophysica Acta | 1991

Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination

Susana Puntarulo; Monica Galleano; Rodolfo A. Sánchez; A. Boveris

The total rate of mitochondrial O2- production in the presence of NADH as substrate increased from 200 to 1340 pmol/min per axis between 2 and 30 h of imbibition. The activities of the enzymes involved in hydroperoxide metabolism, e.g., superoxide dismutase, catalase, peroxidase and glutathione and ascorbate peroxidases, markedly changed during the germination of soybean embryonic axes. Superoxide dismutase was the enzymatic activity affected the most during the initial stages of germination. Intracellular O2- steady-state concentration, calculated from the rate of O2- production and superoxide dismutase activity, showed a 2-fold increase from 2 x 10(-8) M to 4 x 10(-8) M in germination phase I, declined in phase II to 2 x 10(-8) M and remained constant over the rest of the incubation period. The reaction of H2O2 and luminol catalyzed by Co2+ was utilized to measure H2O2 diffused out of the soybean axes after 5 to 10 min of incubation. The catalase-sensitive luminol emission of diffusates prepared from axes previously imbibed from 2 to 30 h corresponded to a H2O2 intracellular steady-state concentration in the range of 0.3 to 0.9 microM. The activity of metal-containing antioxidant enzymes was determined in the extracellular fluid. Cell wall peroxidase activity increased from 10 to 300 mumol/min per mg protein and appears as a potentially important pathway for H2O2 utilization. Hydrogen peroxide metabolism in soybean embryonic axes during early inhibition appears to have the following main features: (a) mitochondrial membranes are the most important source of cytosolic O2- and H2O2; (b) H2O2 is regulated at a steady-state concentration of 0.3-0.9 microM; (c) catalase is the main enzyme in terms of H2O2 utilization; (d) H2O2 exo-diffusion is quantitatively important destiny of intracellular H2O2; and (e) extracellular peroxidase located at the cell wall affords an enzymatic system able to use diffused H2O2.


Free Radical Biology and Medicine | 1999

The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance

Juan José Poderoso; Maria Cecilia Carreras; Francisco Schöpfer; Constanza Lisdero; Natalia A. Riobo; Cecilia Giulivi; A. Boveris; Alberto Boveris; Enrique Cadenas

The reaction of nitric oxide (*NO) with ubiquinol-0 and ubiquinol-2, short-chain analogs of coenzyme Q, was examined in anaerobic and aerobic conditions in terms of formation of intermediates and stable molecular products. The chemical reactivity of ubiquinol-0 and ubiquinol-2 towards *NO differed only quantitatively, the reactions of ubiquinol-2 being slightly faster than those of ubiquinol-0. The ubiquinol/*NO reaction entailed oxidation of ubiquinol to ubiquinone and reduction of *NO to NO-, the latter identified by its reaction with metmyoglobin to form nitroxylmyoglobin and indirectly by measurement of nitrous oxide (N2O) by gas chromatography. Both the rate of ubiquinone accumulation and *NO consumption were linearly dependent on ubiquinol and *NO concentrations. The stoichiometry of *NO consumed per either ubiquinone formed or ubiquinol oxidized was 1.86 A 0.34. The reaction of *NO with ubiquinols proceeded with intermediate formation of ubisemiquinones that were detected by direct EPR. The second order rate constants of the reactions of ubiquinol-0 and ubiquinol-2 with *NO were 0.49 and 1.6 x 10(4) M(-1)s(-1), respectively. Studies in aerobic conditions revealed that the reaction of *NO with ubiquinols was associated with O2 consumption. The formation of oxyradicals - identified by spin trapping EPR- during ubiquinol autoxidation was inhibited by *NO, thus indicating that the O2 consumption triggered by *NO could not be directly accounted for in terms of oxyradical formation or H2O2 accumulation. It is suggested that oxyradical formation is inhibited by the rapid removal of superoxide anion by *NO to yield peroxynitrite, which subsequently may be involved in the propagation of ubiquinol oxidation. The biological significance of the reaction of ubiquinols with *NO is discussed in terms of the cellular O2 gradients, the steady-state levels of ubiquinols and *NO, and the distribution of ubiquinone (largely in its reduced form) in biological membranes with emphasis on the inner mitochondrial membrane.


Free Radical Research | 1988

CHEMILUMINESCENT AND RESPIRATORY RESPONSES RELATED TO THYROID HORMONE-INDUCED LIVER OXIDATIVE STRESS

Virginia Fernández; S. Llesuy; L. Solari; K. Kipreos; Luis A. Videla; A. Boveris

Chemiluminescent and respiratory responses were studied in the liver of rats treated with 0.1 mg of triiodothyronine (T3)/kg for 1 to 7 days. Hyperthyroidism resulted in significant increments in the spontaneous chemiluminescence of the in situ liver in animals exhibiting a calorigenic response. Microsomal NADPH-dependent oxygen uptake was enhanced by T3 treatment for 2 days, an effect that was completely abolished by the antioxidant cyanidanol. A similar microsomal antioxidant-sensitive respiratory component was observed in this situation after the addition of t-butyl hydroperoxide (t-BHP). However, basal rates of microsomal oxygen uptake and light emission in liver homogenates and microsomes were decreased by t-BHP, probably related to thyroid hormone-induced diminution in the content of cytochrome P-450 (Fernández et al.) In addition, liver superoxide dismutase and catalase activities as well as the total content of glutathione were depressed by T3. These results indicate that the calorigenic response in the hyperthyroid state is accompanied by the development of an hepatic oxidative stress characterized by enhanced spontaneous chemiluminescence, enhanced NADPH-dependent microsomal respiration and a decreased antioxidant cellular activity.


Antioxidants & Redox Signaling | 2003

Kidney mitochondrial nitric oxide synthase.

Alberto Boveris; Laura B. Valdez; Silvia Alvarez; Tamara Zaobornyj; A. Boveris; Ana Navarro

Nitric oxide synthase activity was recognized in rat renal cortex mitochondria (mtNOS) with nitric oxide (NO) production rates of 0.14-0.78 nmol/min/mg of protein. Rat pretreatment with enalapril (30 mg/kg/day i.p., up to 15 days) increased NO production in kidney, liver, and heart mitochondria. In kidney, mtNOS activity and mtNOS protein, measured by western blot densitometry, were 5 and 2.3 times increased, respectively. Electron paramagnetic resonance analysis with the probe N-methyl-D-glucamine dithiocarbamate/FeSO(4) detected NO production in mitochondria isolated from enalapril-treated rats, but not in control untreated animals. Polyclonal antibodies anti-iNOS and anti-nNOS detected kidney mtNOS in western blots and inhibited mtNOS biochemical activity. The enzymatic activity of kidney mtNOS generates intramitochondrial NO concentrations that regulate mitochondrial functions: state 3 respiration was decreased by 12-28%, and state 4 hydrogen peroxide production was increased 12-35%.


Biological Research | 2000

Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals

A. Boveris; Andrea Galatro; Susana Puntarulo

The antioxidant ability of nitric oxide (NO) generated by a chemical donor and of commercially available antioxidant preparations was assayed. SNAP (S-Nitroso-N-acetylpenicilamine) was used as the NO donor, and Ginkgo biloba, wheat and alfalfa preparations were tested. Lipid peroxidation was assayed by EPR employing a reaction system consisting of rat liver microsomes, ADP, FeCl3, NADPH and POBN in phosphate buffer, pH=7.4. In vitro NO exposure decreased microsomal lipid peroxidation in a dose-dependent manner. The dose responsible for inhibiting the microsomal content of lipid radical adducts by 50% (LD50) for SNAP was 550 microM (NO generation rate 0.1 microM/min). The addition of 50 microM hemoglobin to the incubation media prevented NO effect on lipid peroxidation. The addition of an amount of the antioxidant preparations equivalent to the LD50 doses inhibited lipid peroxidation by 21, 15, and 33% for wheat, alfalfa, ginkgo biloba preparations respectively in the presence of 550 microM SNAP. We detected a decrease in the content of lipid radical adducts after simultaneous supplementation, although it was less than 50%, even when LD50 doses of the products were added. This suggests that NO and the natural antioxidants inhibit lipid peroxidation by a mechanism that has both common and non-shared features.


Free Radical Biology and Medicine | 2002

The reaction of nitric oxide with 6-hydroxydopamine: Implications for Parkinson's disease

Natalia A. Riobo; Francisco Schöpfer; A. Boveris; Enrique Cadenas; Juan José Poderoso

Oxidation of catecholamines is suggested to contribute to oxidative stress in Parkinsons disease. Nitric oxide (*NO) is able to oxidize cyclic compounds like ubiquinol; moreover, recent lines of evidence proposed a direct role of *NO and its by-product peroxynitrite in the pathophysiology of Parkinsons disease. The aim of this study was to analyze the potential reaction between 6-hydroxydopamine, a classic inducer of Parkinsons disease, and *NO. The results showed that *NO reacts with the deprotonated form of 6-hydroxydopamine at pH 7 and 37 degrees C with a second-order rate constant of 1.5 x 10(3) M(-1) x s(-1) as calculated by the rate of *NO decay measured with an amperometric sensor. Accordingly, the rates of formation of 6-hydroxy-dopamine quinone were dependent on *NO concentration. The coincubation of *NO and 6-hydroxydopamine with either bovine serum albumin or alpha-synuclein led to tyrosine nitration of the protein, in a concentration dependent-manner and sensitive to superoxide dismutase. These findings suggest the formation of peroxynitrite during the redox reactions following the interaction of 6-hydroxydopamine with *NO. The implications of this reaction for in vivo models are discussed in terms of the generation of reactive nitrogen and oxygen species within a propagation process that may play a significant role in neurodegenerative diseases.


Nutrition Research | 1998

Free-radical scavenging actions of natural antioxidants

A. Boveris; Susana Puntarulo

Abstract A dose-dependent inhibitory effect of wheat, alfalfa and ginkgo biloba (EGb) extracts on TBARS production was measured. The half-inhibition concentration (IC50) of the tested antioxidants were 2.7±0.2, 1.3±0.1, and 0.20±0.02 mg/ml for wheat, alfalfa and EGb extracts, respectively. Lipid radicals combined with the spin trap POBN resulted in adducts that gave a characteristic EPR spectrum. The IC50 of the tested antioxidants on lipid radical content, were 12.4±0.2, 7.7±0.3, and 1.20±0.06 mg/ml for wheat, alfalfa and EGb extracts, respectively. Rat liver microsomes in the presence of DMPO, NADPH and iron-citrate generate an EPR spectra with characteristics of the DMPO-OH spin adduct. The basic system, without the addition of any scavenger showed an area of 3.5 AU/mg protein. The areas in the presence of 1.5 mg/ml EGb, 4 mg/ml wheat or alfalfa, were of 1.7±0.2, 3.4±0.3, and 3.6±0.2 AU/mg protein, respectively. O 2 − generation rate by the microsomes exposed to EGb extract was decreased by 40%, as compared to the rate measured in microsomes incubated in the absence of the extract. However, the supplementation of rat liver microsomes with either wheat or alfalfa extracts did not affect microsomal generation of O 2 − . Iron reduction rate was not affected by the addition of any of the tested extracts. The data presented here showed that EGb extracts were able to limit lipid peroxidation and scavenge lipid radicals in rat liver microsomes more efficiently than alfalfa and wheat bran extracts. Moreover, wheat and alfalfa extracts were not able to inhibit O 2 − and ·OH generation by biological membranes, suggesting that their potentiality to be successfully used in human health in the treatment of diseases involving free radical and oxidative damage are not as promising as that for the use of EGb extracts.


Phytochemistry | 2001

Antioxidant capacity of a 3-deoxyanthocyanidin from soybean

A. Boveris; Andrea Galatro; Luis Sambrotta; Rafael A. Ricco; Alberto A. Gurni; Susana Puntarulo

Soybean cotyledons directly exposed to UV-C (190-280 nm) contained a colored pigment in those areas of the epidermis directly exposed to UV-C. Ethanolic extracts from UV-C irradiated cotyledons showed a significant peak at 532 nm at pH=10, but not seen at pH=6, successive changes in pH were accompanied by reversible changes in the spectra. The identity of the pigment isolated from soybean cotyledons was established as apigeninidin by comparing the features of standard of a apigeninidin (from sorghum) previously characterized by FAB-MS, UV, HPLC, 1H NMR, and IR spectroscopy. To characterize antioxidant activity of this compound, its ability to scavenge radical species in vitro was tested. In the concentration range tested (up to 200 microg ml (-1)), apigeninidin did not show any scavenger activity towards hydroxyl radical, quinones or NO. However, ascorbyl radical and lipid radicals were effectively quenched in a dose-dependent manner. Overall, UV-C radiation triggers molecular signals that lead in soybean cotyledons to the synthesis and accumulation of an antioxidant pigment, apigeninidin, that shows scavenger activity against ascorbyl and lipid radicals in in vitro studies.


Reproduction in Domestic Animals | 2011

Nitric oxide and superoxide anion production during heparin-induced capacitation in cryopreserved bovine spermatozoa.

Pc Rodriguez; Laura B. Valdez; Tamara Zaobornyj; A. Boveris; Mt Beconi

The aim of this work was to quantify NO,O(2)(-) and ONOO(-) production during heparin-induced capacitation of cryopreserved bovine spermatozoa. A time dependent hyperbolic increase was observed for heparin-dependent capacitation, O(2) uptake, and NO production. Conversely, O(2)(-) production was increased during the first 15 min of incubation, showing a decrease from this time until 45 min. At 15 min of heparin incubation, a threefold increase in O(2) consumption (5.9 ± 0.6 nmol/min × 10(7) cells), an enhancement in NO release (1.1 ± 0.2 nmol/min × 10(7) cells), and a five-fold increase in O(2)(-) production (1.3 ± 0.07 nmol/min × 10(7) cells), were observed. Peroxynitrite production rate was estimated taking into account NO and O(2)(-) generation and the second-order rate constant of the reaction between these species. To conclude, heparin-induced capacitation of cryopreserved bovine spermatozoa activates (i) mitochondrial O(2) uptake by high ADP levels due to increased energy requirements, (ii) NO production by a constitutive NOS and (iii) O(2)(-) production by a membrane-bound NAD(P)H oxidase. The products of both enzymes are released to the extracellular space and could be involved in the process of sperm capacitation.


Free Radical Research | 1997

Effects of Respiratory Burst Inhibitors on Nitric Oxide Production by Human Neutrophils

Maria Cecilia Carreras; Natalia A. Riobo; Griselda Pargament; A. Boveris; Juan José Poderoso

Human neutrophils (PMN) activated by N-formylmethionyl-leucyl-phenylalanine (fMLP) simultaneously release nitric oxide (.NO), superoxide anion (O2.-) and its dismutation product, hydrogen peroxide (H2O2). To assess whether .NO production shares common steps with the activation of the NADPH oxidase, PMN were treated with inhibitors and antagonists of intracellular signaling pathways and subsequently stimulated either with fMLP or with a phorbol ester (PMA). The G-protein inhibitor, pertussis toxin (1-10 micrograms/ml) decreased H2O2 yield without significantly changing .NO production in fMLP-stimulated neutrophils; no effects were observed in PMA-activated cells. The inhibition of tyrosine kinases by genistein (1-25 micrograms/ml) completely abolished H2O2 release by fMLP-activated neutrophils; conversely, .NO production increased about 1.5- and 3-fold with fMLP and PMA, respectively. Accordingly, orthovanadate, an inhibitor of phosphotyrosine phosphatase, markedly decreased .NO production and increased O2.- release. On the other hand, inhibition of protein kinase C with staurosporine and the use of burst antagonists like adenosine, cholera toxin or dibutyryl-cAMP diminished both H2O2 and .NO production. The results suggest that the activation of the tyrosine kinase pathway in stimulated human neutrophils controls positively O2.- and H2O2 generation and simultaneously maintains .NO production in low levels. In contrast, activation of protein kinase C is a positive modulator for O2.- and .NO production.

Collaboration


Dive into the A. Boveris's collaboration.

Top Co-Authors

Avatar

Susana Puntarulo

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Alberto Boveris

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura B. Valdez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamara Zaobornyj

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Natalia A. Riobo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Andrea Galatro

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge