A. Butkovskyi
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Butkovskyi.
Environmental Science & Technology | 2014
A. Butkovskyi; A.W. Jeremiasse; L. Hernandez Leal; T. van der Zande; H.H.M. Rijnaarts; G. Zeeman
Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor (4-MBC), were analyzed in the effluent of the aerobic gray water treatment system in full operation. The effluent was used for lab-scale experiments with an electrochemical cell operated in batch mode. Three different anodes and five different cathodes have been tested. Among the anodes, Ru/Ir mixed metal oxide showed the best performance. Ag and Pt cathodes worked slightly better than Ti and mixed metal oxide cathodes. The compounds that contain a phenolic ring (parabens, bisphenol A, and triclosan) were completely transformed on this anode at a specific electric charge Q = 0.03 Ah/L. The compounds, which contain a benzene ring and multiple side methyl methyl groups (galaxolide, 4-MBC) required high energy input (Q ≤ 0.6 Ah/L) for transformation. Concentrations of adsorbable organohalogens (AOX) in the gray water effluent increased significantly upon treatment for all electrode combinations tested. Oxidation of gray water on mixed metal oxide anodes could not be recommended as a post-treatment step for gray water treatment according to the results of this study. Possible solutions to overcome disadvantages revealed within this study are proposed.
Environmental Science & Technology | 2017
A. Butkovskyi; Harry Bruning; Stefan A.E. Kools; Huub Rijnaarts; Annemarie P. van Wezel
Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined.
Journal of Hazardous Materials | 2016
A. Butkovskyi; G. Ni; L. Hernandez Leal; H.H.M. Rijnaarts; G. Zeeman
The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.
Water Research | 2015
A. Butkovskyi; L. Hernández Leal; H.H.M. Rijnaarts; G. Zeeman
Removal of 14 pharmaceuticals and 3 of their transformation products was studied in a full-scale source separated sanitation system with separate collection and treatment of black water and grey water. Black water is treated in an up-flow anaerobic sludge blanket (UASB) reactor followed by oxygen-limited autotrophic nitrification-denitrification in a rotating biological contactor and struvite precipitation. Grey water is treated in an aerobic activated sludge process. Concentration of 10 pharmaceuticals and 2 transformation products in black water ranged between low μg/l to low mg/l. Additionally, 5 pharmaceuticals were also present in grey water in low μg/l range. Pharmaceutical influent loads were distributed over two streams, i.e. diclofenac was present for 70% in grey water, while the other compounds were predominantly associated to black water. Removal in the UASB reactor fed with black water exceeded 70% for 9 pharmaceuticals out of the 12 detected, with only two pharmaceuticals removed by sorption to sludge. Ibuprofen and the transformation product of naproxen, desmethylnaproxen, were removed in the rotating biological contactor. In contrast, only paracetamol removal exceeded 90% in the grey water treatment system while removal of other 7 pharmaceuticals was below 40% or even negative. The efficiency of pharmaceutical removal in the source separated sanitation system was compared with removal in the conventional sewage treatment plants. Furthermore, effluent concentrations of black water and grey water treatment systems were compared with predicted no-effect concentrations to assess toxicity of the effluent. Concentrations of diclofenac, ibuprofen and oxazepam in both effluents were higher than predicted no-effect concentrations, indicating the necessity of post-treatment. Ciprofloxacin, metoprolol and propranolol were found in UASB sludge in μg/g range, while pharmaceutical concentrations in struvite did not exceed the detection limits.
Journal of Hazardous Materials | 2016
A. Butkovskyi; H.H.M. Rijnaarts; G. Zeeman; L. Hernandez Leal
Removal of twelve micropollutants, namely biocides, fragrances, ultraviolet (UV)-filters and preservatives in source separated grey and black water treatment systems was studied. All compounds were present in influent grey water in μg/l range. Seven compounds were found in influent black water. Their removal in an aerobic activated sludge system treating grey water ranged from 59% for avobenzone to >99% for hexylcinnamaldehyde. High concentrations of hydrophobic micropollutants in sludge of aerobic activated sludge system indicated the importance of sorption for their removal. Six micropollutants were found in sludge of an Up-flow anaerobic sludge blanket (UASB) reactor treating black water, with four of them being present at significantly higher concentrations after addition of grey water sludge to the reactor. Hence, addition of grey water sludge to the UASB reactor is likely to increase micropollutant content in UASB sludge. This approach should not be followed when excess UASB sludge is designed to be reused as soil amendment.
Environmental Research | 2017
A. Butkovskyi; L. Hernandez Leal; G. Zeeman; H.H.M. Rijnaarts
ABSTRACT The quality of anaerobic sludge and struvite from black water treatment system, aerobic sludge from grey water treatment system and effluents of both systems was assessed for organic micropollutant content in order to ensure safety when reusing these products. Use of anaerobic black water sludge and struvite as soil amendments is recommended based on the low micropollutant content. Aerobic grey water sludge is recommended for disposal, because of the relatively high micropollutant concentrations, exceeding those in sewage sludge. Effluents of black and grey water treatment systems require post‐treatment prior to reuse, because the measured micropollutant concentrations in the effluents are above ecotoxicological thresholds. HighlightsBlack water contains personal care products, grey water contains pharmaceuticals.High risk quotients are calculated for biocides triclosan and triclocarban.Effluent post‐treatment is required before grey and black water reuse.UASB sludge and struvite can be applied as soil amendments.Soil applications of grey water sludge should be prohibited.
Journal of Environmental Management | 2019
A. Butkovskyi; Gijsbert Cirkel; Elvira Bozileva; Harry Bruning; Annemarie P. van Wezel; Huub Rijnaarts
The potential water demand for fracturing fluids along with the possible flowback and produced water production is assessed for the Dutch Posidonia shale. Total water demand estimated for 25 years of the field development using historic data from the U.S. plays varies between 12.2 and 36.9 Mm3. The maximal annual water consumption of 0.95-2.88 Mm3 is expected in the peak years of shale gas production. These figures are much lower than the availability of any potential water sources, which include drinking water, fresh and brackish groundwater, river water, effluents of wastewater treatment plants (WWTP) and sea water. River water is considered the most promising water source for fracturing fluids in the Dutch Posidonia shale based on its availability (>6·104 Mm3/year) and quality (only bacterial composition needs to be controlled). Total wastewater production for the whole period of the field development is estimated between 6.6 and 48.0 Mm3. Wastewater recycling can cover significant part of the source water demand for fracturing fluid. However, high mineral content of the wastewater as well as temporal and spatial discrepancies between wastewater production and water demand will form obstacles for wastewater recycling. The assessment framework developed in this study may be applied for other shale gas fields with high uncertainties regarding subsurface properties, connate formation water characteristics and future legislative framework.
Water Research | 2018
A. Butkovskyi; Ann-Hélène Faber; Yue Wang; K. Grolle; Roberta Hofman-Caris; Harry Bruning; Annemarie P. van Wezel; Huub Rijnaarts
Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps.
Water Science and Technology | 2017
A. Butkovskyi; L. Sevenou; R. J. W. Meulepas; L. Hernández Leal; G. Zeeman; H.H.M. Rijnaarts
The effect of granular activated carbon (GAC) addition on the removal of diclofenac, ibuprofen, metoprolol, galaxolide and triclosan in a up-flow anaerobic sludge blanket (UASB) reactor was studied. Prior to the reactor studies, batch experiments indicated that addition of activated carbon to UASB sludge can decrease micropollutant concentrations in both liquid phase and sludge. In continuous experiments, two UASB reactors were operated for 260 days at an HRT of 20 days, using a mixture of source separated black water and sludge from aerobic grey water treatment as influent. GAC (5.7 g per liter of reactor volume) was added to one of the reactors on day 138. No significant difference in COD removal and biogas production between reactors with and without GAC addition was observed. In the presence of GAC, fewer micropollutants were washed out with the effluent and a lower accumulation of micropollutants in sludge and particulate organic matter occurred, which is an advantage in micropollutant emission reduction from wastewater. However, the removal of micropollutants by adding GAC to a UASB reactor would require more activated carbon compared to effluent post-treatment. Additional research is needed to estimate the effect of bioregeneration on the lifetime of activated carbon in a UASB-GAC reactor.
Proceedings of the 8th IWA Specialized Conference on Assessment and control of micropollutants and hazardous substances in water, 16-20 June 2013, Zurcih Swiss | 2013
A. Butkovskyi; A.W. Jeremiasse; L. Hernandez Leal; G. Zeeman; H.H.M. Rijnaarts