A. C. Lanzafame
University of Catania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. C. Lanzafame.
Astronomy and Astrophysics | 2014
S. Mikolaitis; V. Hill; A. Recio Blanco; P. de Laverny; C. Allende Prieto; G. Kordopatis; Grazina Tautvaisiene; D. Romano; G. Gilmore; S. Randich; Sofia Feltzing; G. Micela; A. Vallenari; Emilio J. Alfaro; Thomas Bensby; A. Bragaglia; E. Flaccomio; A. C. Lanzafame; E. Pancino; R. Smiljanic; Maria Bergemann; Giovanni Carraro; M. T. Costado; F. Damiani; A. Hourihane; P. Jofre; C. Lardo; L. Magrini; E. Maiorca; L. Morbidelli
Aims. Until recently, most high-resolution spectroscopic studies of the Galactic thin and thick discs were mostly confined to objects in the solar vicinity. Here we aim at enlarging the volume in which individual chemical abundances are used to characterise the thin and thick discs, using the first internal data release of the Gaia-ESO survey (GES iDR1). Methods. We used the spectra of around 2000 FGK dwarfs and giants from the GES iDR1, obtained at resolutions of up to R similar to 20 000 with the FLAMES/GIRAFFE spectrograph. We derive and discuss the abundances of eight elements (Mg, Al, Si, Ca, Ti, Fe, Cr, Ni, and Y). Results. We show that the trends of these elemental abundances with iron are very similar to those in the solar neighbourhood. We find a natural division between alpha-rich and alpha-poor stars, best seen in the bimodality of the [Mg/M] distributions in bins of metallicity, which we attribute to thick-and thin-disc sequences, respectively. This separation is visible for most alpha-elements and for aluminium. With the possible exception of Al, the observed dispersion around the trends is well described by the expected errors, leaving little room for astrophysical dispersion. Using previously derived distances from the first paper from this series for our sample, we further find that the thick-disc is more extended vertically and is more centrally concentrated towards the inner Galaxy than the thin-disc, which indicates a shorter scale-length. We derive the radial (4 to 12 kpc) and vertical (0 to 3.5 kpc) gradients in metallicity, iron, four alpha-element abundances, and aluminium for the two populations, taking into account the identified correlation between R-GC and vertical bar Z vertical bar. Similarly to other works, a radial metallicity gradient is found in the thin disc. The positive radial individual [alpha/M] gradients found are at variance from the gradients observed in the RAVE survey. The thin disc also hosts a negative vertical metallicity gradient in the solar cylinder, accompanied by positive individual [alpha/M] and [Al/M] gradients. The thick-disc, on the other hand, presents no radial metallicity gradient, a shallower vertical metallicity gradient than the thin-disc, an alpha-elements-to-iron radial gradient in the opposite sense than that of the thin disc, and positive vertical individual [alpha/M] and [Al/M] gradients. We examine several thick-disc formation scenarii in the light of these radial and vertical trends.
The Astrophysical Journal | 2015
S. E. Koposov; Andrew R. Casey; Vasily Belokurov; James R. Lewis; Gerard Gilmore; C. C. Worley; A. Hourihane; S. Randich; Thomas Bensby; A. Bragaglia; Maria Bergemann; Giovanni Carraro; M. T. Costado; E. Flaccomio; P. Francois; Ulrike Heiter; V. Hill; P. Jofre; C. Lando; A. C. Lanzafame; P. de Laverny; L. Monaco; L. Morbidelli; L. Sbordone; Š Mikolaitis; Nils Ryde
We report on VLT/GIRAFFE spectra of stars in two recently discovered ultra-faint satellites, Reticulum 2 and Horologium 1, obtained as part of the Gaia-ESO Survey. We identify 18 members in Reticulum 2 and five in Horologium 1. We find Reticulum 2 to have a velocity dispersion of 3.22(-0.49)(+1.64) km s(-1) , implying a mass-to-light ratio (M/L) of similar to 500. The mean metallicity of Reticulum 2 is [Fe/H] = -2.46, with an intrinsic dispersion of similar to 0.3 dex and alpha-enhancement of similar to 0.4 dex. We conclude that Reticulum 2 is a dwarf galaxy. We also report on the serendipitous discovery of four stars in a previously unknown stellar substructure near Reticulum 2 with [Fe/H] similar to -2 and V-hel similar to 220 km s(-1), far from the systemic velocity of Reticulum 2. For Horologium 1 we infer a velocity dispersion of sigma (V) = 4.9(-0.9)(+2.8) km s(-1) and a M/L ratio of similar to 600, leading us to conclude that Horologium 1 is also a dwarf galaxy. Horologium 1 is slightly more metal-poor than Reticulum 2 ([Fe/H] = -2.76) and is similarly alpha-enhanced: [alpha/Fe] similar to 0.3 dex with a significant spread of metallicities of 0.17 dex. The line-of-sight velocity of Reticulum 2 is offset by 100 km s(-1) from the prediction of the orbital velocity of the Large Magellanic Cloud (LMC), thus making its association with the Cloud uncertain. However, at the location of Horologium 1, both the backward-integrated orbit of the LMC and its halo are predicted to have radial velocities similar to that of the dwarf. Therefore, it is possible that Horologium 1 is or once was a member of the Magellanic family.
Astronomy and Astrophysics | 2011
S. Messina; S. Desidera; A. C. Lanzafame; M. Turatto; E. F. Guinan
Context. Rotational properties of late-type low-mass members of associations of known age provide a fundamental source of information on stellar internal structure and its evolution. Aims. We aim at determining the rotational and magnetic-related activity properties of stars at different stages of evolution. We focus our attention primarily on members of young stellar associations of known ages. Specifically, we extend our previous analysis in Paper I (Messina et al. 2010, A&A 520, A15) to 3 additional young stellar associations beyond 100 pc and with ages in the range 6-40 Myr: ǫ Chamaeleontis (∼6 Myr), Octans (∼20 Myr), and Argus (∼40 Myr). Additional rotational data of η Chamaeleontis and IC 2391 clusters are also considered. Methods. Rotational periods were determined by applying the Lomb-Scargle periodogram technique to photometric time-series data obtained by the All Sky Automated Survey (ASAS) and the Wide Angle Search for Planets (SuperWASP) archives. The magnetic activity level was derived from the amplitude of the V light curves. Results. We detected the rotational modulation and measured the rotation periods of 56 stars for the first time, confirmed 11 and revised 3 rotation periods already known from the literature. Adding the periods of 10 additional stars retrieved from the literature we determined a sample of 80 periodic stars at ages of ∼6, ∼20, and ∼40 Myr. Using the SuperWASP data we also revisited some of the targets studied in Paper I. Conclusions. With the present study we have completed the analysis of the rotational properties of the late-type members of all known young loose associations in the solar neighbourhood. Considering also the results of Paper I, we have derived the rotation periods of 241 targets: 171 confirmed, 44 likely, 26 uncertain. The period of the remaining 50 stars known to be part of loose associations still remains unknown. The rotation period distributions we provided in the 0.8-1.2 M⊙ mass range span nine different ages from 1 to ∼ 100 Myr. This rotation period catalogue, and specifically the new information presented in this paper at ∼6, 20, and 40 Myr, contributes significantly to a better observational description of the angular momentum evolution of young stars. The results of the angular momentum evolution model based on this period database will@ be presented in forthcoming papers.
Astronomy and Astrophysics | 2015
S. Desidera; E. Covino; S. Messina; J. Hagelberg; Joshua E. Schlieder; K. Biazzo; Juan M. Alcala; G. Chauvin; A. Vigan; J.-L. Beuzit; Mariangela Bonavita; M. Bonnefoy; P. Delorme; Valentina D'Orazi; M. Esposito; Markus Feldt; L. Girardi; R. Gratton; T. Henning; A.-M. Lagrange; A. C. Lanzafame; R. Launhardt; M. Marmier; C. Melo; Michael R. Meyer; David Mouillet; Claire Moutou; D. Ségransan; S. Udry; C. M. Zaidi
Context. Young, close stars are ideal targets for searching planets using the direct imaging technique. The determination of stellar parameters is crucial for the interpretation of imaging survey results, particularly since the luminosity of substellar objects has a strong dependence on system age. Aims. We have conducted a large program with NaCo at the VLT to search for planets and brown dwarfs in wide orbits around 86 stars. A large fraction of the targets observed with NaCo were poorly investigated in the literature. We performed a study to characterize the fundamental properties (age, distance, and mass) of the stars in our sample. To improve target age determinations, we compiled and analyzed a complete set of age diagnostics. Methods. We measured spectroscopic parameters and age diagnostics using dedicated observations acquired with FEROS and CORALIE spectrographs at La Silla Observatory. We also made extensive use of archival spectroscopic data and the results that are available in the literature. Additionally, we exploited photometric time-series, which are available in ASAS and Super-WASP archives, to derive a rotational period for a large fraction of our program stars. Results. We provided updated characterization of all the targets observed in the VLT NaCo Large program, a survey designed to probe the occurrence of exoplanets and brown dwarfs in wide orbits. The median distance and age of our program stars are 64 pc and 100 Myr, respectively. Nearly all the stars have masses between 0.70 and 1.50 M-circle dot, with a median value of 1.01 M-circle dot. The typical metallicity is close to solar with a dispersion that is smaller than that of samples usually observed in radial velocity surveys. Several stars are confirmed or proposed here to be members of close young moving groups. Eight spectroscopic binaries are identified.
Astronomy and Astrophysics | 2008
A. Frasca; K. Biazzo; Guray Tas; S. Evren; A. C. Lanzafame
Aims. We present the results of a contemporaneous photometric and spectroscopic monitoring of two RS CVn binaries, namely λ And and II Peg. The aim of this work is to investigate the behavior of surface inhomogeneities in the atmospheres of the active components of these systems that have nearly the same temperatures but different gravities. Methods. The light curves and the modulation of the surface temperature, as recovered from line-depth ratios (LDRs), were used to map the photospheric spots, while the Hα emission was used as an indicator of chromospheric inhomogeneities. The spot temperatures and sizes were derived from a spot model applied to the contemporaneous light and temperature curves. Results. We find larger and cooler spots on II Peg (Tsp � 3600 K) than on λ And (Tsp � 3900 K); this could be the result of both the difference in gravity and the higher activity level of the former. Moreover, we find a clear anti-correlation between the Hα emission and the photospheric diagnostics (temperature and light curves). We have detected a modulation in the intensity of the He i D3 line with the star rotation, suggesting surface features also in the upper chromosphere of these stars. A rough reconstruction of the 3D structure of their atmospheres was also performed by applying a spot/plage model to the light and temperature curves and to the Hα flux modulation. In addition, a strong flare affecting the Hα ,t he Hei D3, and the cores of Na i D1,2 lines has been observed on II Peg. Conclusions. The spot/plage configuration has been reconstructed in the visible component of λ And and II Peg, which have nearly the same temperature but very different gravities and rotation periods. A close spatial association of photospheric and chromospheric active regions, at the time of our observations, was found in both stars. Larger and cooler spots were found on II Peg, the system with the active component of higher gravity and a higher activity level. The area ratio of plages to spots seems to decrease when the spots get bigger. Moreover, with both this and literature data, a correlation between the temperature difference ∆T = Tph −Tsp and the surface gravity is also suggested.
Astronomy and Astrophysics | 2016
R. Smiljanic; D. Romano; A. Bragaglia; P. Donati; L. Magrini; Eileen D. Friel; Heather R. Jacobson; S. Randich; P. Ventura; Karin Lind; Maria Bergemann; Thomas Nordlander; Thierry Morel; E. Pancino; Grazina Tautvaisiene; V. Adibekyan; M. Tosi; A. Vallenari; G. Gilmore; Thomas Bensby; P. François; S. E. Koposov; A. C. Lanzafame; A. Recio-Blanco; A. Bayo; Giovanni Carraro; Andrew R. Casey; M. T. Costado; E. Franciosini; Ulrike Heiter
Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than similar to 1.5-2.0 M-circle dot. The surface alu ...
The Astrophysical Journal | 2010
R. Susino; A. C. Lanzafame; Antonino Francesco Lanza; D. Spadaro
We study the signatures of coronal heating on the differential emission measure (DEM) by means of hydrodynamic simulations capable of resolving the chromospheric-corona transition region sections of multi-stranded coronal loops and following their evolution. We consider heating either uniformly distributed along the loop or localized close to the chromospheric footpoints, in both steady and impulsive regimes. Our simulations show that condensation at the top of the loop forms when the impulsive heating, with a pulse cadence lower than the plasma cooling time, is localized at the loop footpoints, and the pulse energy is below a threshold above which the heating balances the radiative losses, thus preventing the catastrophic cooling which triggers the condensation. A condensation does not produce observable signatures in the DEM because it does not redistribute the plasma over a sufficiently large temperature range. On the other hand, the DEM coronal peak is found sensitive to the pulse cadence time when this is longer or comparable to the plasma cooling time. In this case, the heating pulses produce large oscillations in temperature in the bulk of the coronal plasma, which effectively smears out the coronal DEM structure. The pronounced DEM peak observed in active regions would indicate a predominance of conditions in which the cadence time is shorter or of the order of the plasma cooling time, whilst the structure of the quiet-Sun DEM suggests a cadence time longer than the plasma cooling time. Our simulations give an explanation of the warm overdense and hot underdense loops observed by TRACE, SOHO, and Yohkoh. However, they are unable to reproduce both the transition region and the coronal DEM structure with a unique set of parameters, which outlines the need for a more realistic description of the transition region.
Astronomy and Astrophysics | 2016
J. Bouvier; A. C. Lanzafame; Laura Venuti; A. Klutsch; R. D. Jeffries; A. Frasca; Estelle Moraux; K. Biazzo; S. Messina; G. Micela; S. Randich; John R. Stauffer; Ann Marie Cody; E. Flaccomio; G. Gilmore; A. Bayo; Thomas Bensby; A. Bragaglia; G. Carraro; Andrew R. Casey; M. T. Costado; F. Damiani; E. Delgado Mena; P. Donati; E. Franciosini; A. Hourihane; S. E. Koposov; C. Lardo; J. Lewis; L. Magrini
Context. The evolution of lithium abundance in cool dwarfs provides a unique probe of nonstandard processes in stellar evolution. n nAims. We investigate the lithium content of young low-mass stars in the 5 Myr old, star forming region NGC 2264 and its relationship with rotation. n nMethods. We combine lithium equivalent width measurements (EW(Li)) from the Gaia-ESO Survey with the determination of rotational periods from the CSI 2264 survey. We only consider bona fide nonaccreting cluster members to minimize the uncertainties on EW(Li). n nResults. We report the existence of a relationship between lithium content and rotation in NGC 2264 at an age of 5 Myr. The Li-rotation connection is seen over a restricted temperature range (T_(eff)u2009=u20093800–4400 K), where fast rotators are Li-rich compared to slow rotators. This correlation is similar to, albeit of lower amplitude than, the Li-rotation connection previously reported for K dwarfs in the 125 Myr old Pleiades cluster. We investigate whether the nonstandard pre-main-sequence models developed so far to explain the Pleiades results, which are based on episodic accretion, pre-main-sequence, core-envelope decoupling, and/or radius inflation due to enhanced magnetic activity, can account for early development of the Li-rotation connection. While radius inflation appears to be the most promising possibility, each of these models has issues. We therefore also discuss external causes that might operate during the first few Myr of pre-main-sequence evolution, such as planet engulfment and/or steady disk accretion, as possible candidates for the common origin for Li excess and fast rotation in young low-mass pre-main-sequence stars. n nConclusions. The emergence of a connection between lithium content and rotation rate at such an early age as 5 Myr suggests a complex link between accretion processes, early angular momentum evolution, and possibly planet formation, which likely impacts early stellar evolution and has yet to be fully deciphered.
Astronomy and Astrophysics | 2016
S. Messina; A. C. Lanzafame; Gregory A. Feiden; M. Millward; S. Desidera; Andrea P. Buccino; I. Curtis; E. Jofré; P. Kehusmaa; Biman J. Medhi; B. Monard; R. Petrucci
Context. Evidence exists in the 125-Myr Pleiades cluster, and more recently in the 5-Myr NGCu20092264 cluster, to show that rotation plays a key role in lithium (Li) depletion processes among low-mass stars. Fast rotators appear to be less Li-depleted than equal-mass slow rotators. Aims. We intend to explore the existence of a Li depletion-rotation connection among the β Pictoris members at an age of about 24 Myr, and to use this correlation either to confirm or to improve age estimates based on the lithium depletion boundary (LDB) modeling. Methods. We photometrically monitored all the known members of the β Pictoris association with at least one lithium equivalent width (Li EW) measurement from the literature. Results. We measured the rotation periods of 30 members for the first time and retrieved the rotation periods for another 36 members from the literature, building a catalogue of 66 members with a measured rotation period and Li EW. Conclusions. We find that in the 0.3 M M ⊙ range, there is a strong correlation between rotation and Li EW. For higher mass stars, no significant correlation is found. For very low-mass stars in the Li depletion onset, at about 0.1 M ⊙ , there are too few data to infer a significant correlation. The observed Li EWs are compared with those predicted by the Dartmouth stellar evolutionary models that incorporate the effects of magnetic fields. After decorrelating the Li EW from the rotation period, we find that the hot side of the LDB is well fitted by Li EW values that correspond to an age of 25 ± 3 Myr, which is in good agreement with independent estimates from the literature.
Astronomy and Astrophysics | 2017
E. Pancino; C. Lardo; Giuseppe Altavilla; S. Marinoni; S. Ragaini; G. Cocozza; M. Bellazzini; Elena Sabbi; M. Zoccali; P. Donati; Ulrike Heiter; S. E. Koposov; R. Blomme; Thierry Morel; S. Simón-Díaz; A. Lobel; Caroline Soubiran; Josefina Montalbán; M. Valentini; Andrew R. Casey; S. Blanco-Cuaresma; P. Jofre; C. C. Worley; L. Magrini; A. Hourihane; P. François; Sofia Feltzing; G. Gilmore; S. Randich; Martin Asplund
The Gaia -ESO survey (GES) is now in its fifth and last year of observations and has produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia . The calibration of GES is particularly delicate because of (i) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars; these targets have a large wide of metallicities and also include fast rotators, emission line objects, and stars affected by veiling; (ii) the variety of observing setups, with different wavelength ranges and resolution; and (iii) the choice of analyzing the data with many different state-of-the-art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4, which is the fourth internal GES data release and will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average offsets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals.