Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A.C. Riegel is active.

Publication


Featured researches published by A.C. Riegel.


International Journal of Radiation Oncology Biology Physics | 2009

Cine Computed Tomography Without Respiratory Surrogate in Planning Stereotactic Radiotherapy for Non–Small-Cell Lung Cancer

A.C. Riegel; Joe Y. Chang; S. Vedam; Valen E. Johnson; P Chi; Tinsu Pan

PURPOSE To determine whether cine computed tomography (CT) can serve as an alternative to four-dimensional (4D)-CT by providing tumor motion information and producing equivalent target volumes when used to contour in radiotherapy planning without a respiratory surrogate. METHODS AND MATERIALS Cine CT images from a commercial CT scanner were used to form maximum intensity projection and respiratory-averaged CT image sets. These image sets then were used together to define the targets for radiotherapy. Phantoms oscillating under irregular motion were used to assess the differences between contouring using cine CT and 4D-CT. We also retrospectively reviewed the image sets for 26 patients (27 lesions) at our institution who had undergone stereotactic radiotherapy for Stage I non-small-cell lung cancer. The patients were included if the tumor motion was >1 cm. The lesions were first contoured using maximum intensity projection and respiratory-averaged CT image sets processed from cine CT and then with 4D-CT maximum intensity projection and 10-phase image sets. The mean ratios of the volume magnitude were compared with intraobserver variation, the mean centroid shifts were calculated, and the volume overlap was assessed with the normalized Dice similarity coefficient index. RESULTS The phantom studies demonstrated that cine CT captured a greater extent of irregular tumor motion than did 4D-CT, producing a larger tumor volume. The patient studies demonstrated that the gross tumor defined using cine CT imaging was similar to, or slightly larger than, that defined using 4D-CT. CONCLUSION The results of our study have shown that cine CT is a promising alternative to 4D-CT for stereotactic radiotherapy planning.


Medical Physics | 2010

Thoracic target volume delineation using various maximum‐intensity projection computed tomography image sets for radiotherapy treatment planning

David A. Zamora; A.C. Riegel; X Sun; P Balter; George Starkschall; Osama Mawlawi; Tinsu Pan

PURPOSE Four-dimensional computed tomography (4D-CT) is commonly used to account for respiratory motion of target volumes in radiotherapy to the thorax. From the 4D-CT acquisition, a maximum-intensity projection (MIP) image set can be created and used to help define the tumor motion envelope or the internal gross tumor volume (iGTV). The purpose of this study was to quantify the differences in automatically contoured target volumes for usage in the delivery of stereotactic body radiation therapy using MIP data sets generated from one of the four methods: (1) 4D-CT phase-binned (PB) based on retrospective phase calculations, (2) 4D-CT phase-corrected phase-binned (PC-PB) based on motion extrema, (3) 4D-CT amplitude-binned (AB), and (4) cine CT built from all available images. METHODS MIP image data sets using each of the four methods were generated for a cohort of 28 patients who had prior thoracic 4D-CT scans that exhibited lung tumor motion of at least 1 cm. Each MIP image set was automatically contoured on commercial radiation treatment planning system. Margins were added to the iGTV to observe differences in the final simulated planning target volumes (PTVs). RESULTS For all patients, the iGTV measured on the MIP generated from the entire cine CT data set (iGTVcine) was the largest. Expressed as a percentage of iGTVcine, 4D-CT iGTV (all sorting methods) ranged from 83.8% to 99.1%, representing differences in the absolute volume ranging from 0.02 to 4.20 cm3; the largest average and range of 4D-CT iGTV measurements was from the PC-PB data set. Expressed as a percentage of PTVcine (expansions applied to iGTVeine), the 4D-CT PTV ranged from 87.6% to 99.6%, representing differences in the absolute volume ranging from 0.08 to 7.42 cm3. Regions of the measured respiratory waveform corresponding to a rapid change of phase or amplitude showed an increased susceptibility to the selection of identical images for adjacent bins. Duplicate image selection was most common in the AB implementation, followed by the PC-PB method. The authors also found that the image associated with the minimum amplitude measurement did not always correlate with the image that showed maximum tumor motion extent. CONCLUSIONS The authors identified cases in which the MIP generated from a 4D-CT sorting process under-represented the iGTV by more than 10% or up to 4.2 cm3 when compared to the iGTVcine. They suggest utilization of a MIP generated from the full cine CT data set to ensure maximum inclusive tumor extent.


Medical Dosimetry | 2009

Variability of Gross Tumor Volume Delineation in Head-and-Neck Cancer Using PET/CT Fusion, Part II: The Impact of a Contouring Protocol

Anthony M. Berson; Nicholas F. Stein; A.C. Riegel; Sylvie Destian; Tracy Ng; Lawrence B. Tena; Robin J. Mitnick; Sherif Heiba

The purpose of this study was to assess the efficacy of a gross tumor volume (GTV) contouring protocol on interobserver variability between 4 physicians in positron emission therapy/computed tomography (PET/CT) treatment planning of head-and-neck cancer. A GTV contouring protocol for PET/CT treatment planning was developed utilizing 4 stages: Preliminary contouring on CT alone, determination of appropriate PET windowing, accurate image registration, and modification of CT contouring with correctly formatted PET/CT display and rules for modality disagreement. Two neuroradiologists and 2 radiation oncologists (designated as A, B, C, and D, respectively) were given a tutorial of PET/CT coregistered imaging individualized to their skill level, which included a step-by-step explanation of the protocol with clinical examples. Opportunities for questions and hands-on practice were given. The physicians were asked to re-contour 16 head-and-neck patients from Part I on PET/CT fusion imaging. Differences in volume magnitude were analyzed for statistical significance by analysis of variance (ANOVA) and paired t-tests (alpha<0.05). Volume overlap was analyzed for statistical significance using Wilcoxon signed-rank tests (alpha<0.05). Volume overlap increased significantly from Part I to Part II (p<0.05). One previously significant difference between physicians disappeared with the protocol in place. The mean fusion volume of Physician C, however, remained significantly larger than that of Physician D (p<0.01). This result is unchanged from Part I. The multidisciplinary contouring protocol significantly improved the coincidence of GTVs contoured by multiple physicians. The magnitudes of the volumes showed marginal improvement in consistency. Developing an institutional contouring protocol for PET/CT treatment planning is highly recommended to reduce interobserver variability.


Frontiers in Oncology | 2013

Incident Learning and Failure-Mode-and-Effects-Analysis Guided Safety Initiatives in Radiation Medicine

A. Kapur; Gina M. Goode; Catherine Riehl; P. Zuvic; Sherin Joseph; Nilda Adair; Michael Interrante; Beatrice Bloom; Lucille Lee; Rajiv Sharma; Anurag Sharma; J. Antone; A.C. Riegel; Lili Vijeh; Honglai Zhang; Yijian Cao; C. Morgenstern; E. Montchal; B.W. Cox; Louis Potters

By combining incident learning and process failure-mode-and-effects-analysis (FMEA) in a structure-process-outcome framework we have created a risk profile for our radiation medicine practice and implemented evidence-based risk-mitigation initiatives focused on patient safety. Based on reactive reviews of incidents reported in our departmental incident-reporting system and proactive FMEA, high safety-risk procedures in our paperless radiation medicine process and latent risk factors were identified. Six initiatives aimed at the mitigation of associated severity, likelihood-of-occurrence, and detectability risks were implemented. These were the standardization of care pathways and toxicity grading, pre-treatment-planning peer review, a policy to thwart delay-rushed processes, an electronic whiteboard to enhance coordination, and the use of six sigma metrics to monitor operational efficiencies. The effectiveness of these initiatives over a 3-years period was assessed using process and outcome specific metrics within the framework of the department structure. There has been a 47% increase in incident-reporting, with no increase in adverse events. Care pathways have been used with greater than 97% clinical compliance rate. The implementation of peer review prior to treatment-planning and use of the whiteboard have provided opportunities for proactive detection and correction of errors. There has been a twofold drop in the occurrence of high-risk procedural delays. Patient treatment start delays are routinely enforced on cases that would have historically been rushed. Z-scores for high-risk procedures have steadily improved from 1.78 to 2.35. The initiatives resulted in sustained reductions of failure-mode risks as measured by a set of evidence-based metrics over a 3-years period. These augment or incorporate many of the published recommendations for patient safety in radiation medicine by translating them to clinical practice.


Medical Physics | 2008

Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate

A.C. Riegel; Moiz Ahmad; X Sun; Tinsu Pan

Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass y criteria. The average maximum and mean y indices were very low (well below 1), indicating good agreement between dose distributions. Increasing the cine duration generally increased the dose agreement. In the follow-up study, 49 of 50 patients had 100% of points within the PTV pass the y criteria. The average maximum and mean y indices were again well below 1, indicating good agreement. Dose calculation on RACT from cine CT is negligibly different from dose calculation on RACT from 4D-CT. Differences can be decreased further by increasing the cine duration of the cine CT scan.


Medical Dosimetry | 2013

Comparative dosimetry of volumetric modulated arc therapy and limited-angle static intensity-modulated radiation therapy for early-stage larynx cancer

A.C. Riegel; J. Antone; David L. Schwartz

To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed as low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.


Medical Physics | 2013

New weighted maximum‐intensity‐projection images from cine CT for delineation of the lung tumor plus motion

Tinsu Pan; A.C. Riegel; Moiz Ahmad; X Sun; Joe Y. Chang; Dershan Luo

PURPOSE In treatment planning of the lung tumor with 4D-CT, maximum-intensity-projection (MIP) images have been used for delineation of the gross tumor volume plus motion or iGTV, which can then be revised with the multiple phases of the 4D-CT images. Although majority of contouring can be performed with MIP, the MIP images are not recommended for delineation of iGTV if the tumor is near or connected to the diaphragm or other structures of a similar density due to insufficient contrast between the tumor and the surrounding tissues in the MIP images. To remedy this shortcoming, the authors developed a new weighted MIP (wMIP) from cine CT without respiratory gating for contouring the iGTV. METHODS The wMIP images are obtained by keeping one phase of the cine CT images with the largest tumor in the overlap region of the tumor and the diaphragm. Outside the overlap region, the wMIP images are identical to the MIP images. Both MIP and wMIP images are obtained without respiratory gating from cine CT. RESULTS The authors demonstrated in a study of seven patients that wMIP can achieve 92% of the iGTV from 4D-CT. The maximum surface separation of the two iGTVs between wMIP and 4D-CT was 1.7 mm and six out of the seven studies had less than 1 mm in surface separation between the iGTVs of wMIP and 4D-CT. CONCLUSIONS This development has the potential of enabling many CT scanners capable of cine CT to assess the respiratory motion of a lung tumor without 4D-CT.PURPOSE In treatment planning of the lung tumor with 4D-CT, maximum-intensity-projection (MIP) images have been used for delineation of the gross tumor volume plus motion or iGTV, which can then be revised with the multiple phases of the 4D-CT images. Although majority of contouring can be performed with MIP, the MIP images are not recommended for delineation of iGTV if the tumor is near or connected to the diaphragm or other structures of a similar density due to insufficient contrast between the tumor and the surrounding tissues in the MIP images. To remedy this shortcoming, the authors developed a new weighted MIP (wMIP) from cine CT without respiratory gating for contouring the iGTV. METHODS The wMIP images are obtained by keeping one phase of the cine CT images with the largest tumor in the overlap region of the tumor and the diaphragm. Outside the overlap region, the wMIP images are identical to the MIP images. Both MIP and wMIP images are obtained without respiratory gating from cine CT. RESULTS The authors demonstrated in a study of seven patients that wMIP can achieve 92% of the iGTV from 4D-CT. The maximum surface separation of the two iGTVs between wMIP and 4D-CT was 1.7 mm and six out of the seven studies had less than 1 mm in surface separation between the iGTVs of wMIP and 4D-CT. CONCLUSIONS This development has the potential of enabling many CT scanners capable of cine CT to assess the respiratory motion of a lung tumor without 4D-CT.


Journal of Applied Clinical Medical Physics | 2010

Average CT in PET studies of colorectal cancer patients with metastasis in the liver and esophageal cancer patients

Elena Tonkopi; P Chi; Osama Mawlawi; A.C. Riegel; Eric Rohren; Homer A. Macapinlac; Tinsu Pan

Average CT (ACT) and PET have a similar temporal resolution and it has been shown to improve registration of the CT and PET data for PET/CT imaging of the thorax. The purpose of this study was to quantify the effect of ACT attenuation correction on PET for gross tumor volume (GTV) delineation with standardized uptake value (SUV) for liver and esophageal lesions. Our study included 48 colorectal cancer patients with metastasis in the liver and 52 esophageal cancer patients. These patients underwent a routine PET/CT scan followed by a cine CT scan of the thoracic region for ACT. Differences between the two PET data sets (PETHCT and PETACT) corrected with the helical CT (HCT) and ACT were quantified by analyzing image alignment, maximum SUV (SUVmax), and GTV. The 67% of the colorectal and 73% of the esophageal studies demonstrated misregistration between the PETHCT and HCT data. ACT was effective in removing misregistration artifacts in 65% of the misregisted colorectal and in 76% of the misregisted esophageal cancer patients. Misregistration between the CT and PET data affected GTVs due to the change in SUVmax with ACT. A change of SUVmax greater than 20% between PETHCT and PETACT was found in 15% of the colorectal and 17% of the esophageal cases. Our results demonstrated a more pronounced effect of misregistration for the smaller lesions (<5cm3) near the diaphragm (<5cm). ACT was effective in improving registration between the CT and PET data in PET/CT for the colorectal and esophageal cancer patients. PACS number: 87.58.Fg


Journal of Applied Clinical Medical Physics | 2014

Defining internal target volume using positron emission tomography for radiation therapy planning of moving lung tumors

A.C. Riegel; M. Kara Bucci; Osama Mawlawi; Moiz Ahmad; Dershan Luo; Adam G. Chandler; Tinsu Pan

Substantial disagreement exists over appropriate PET segmentation techniques for non‐small cell lung cancer. Currently, no segmentation algorithm explicitly considers tumor motion in determining tumor borders. We developed an automatic PET segmentation model as a function of target volume, motion extent, and source‐to‐background ratio (the VMSBR model). The purpose of this work was to apply the VMSBR model and six other segmentation algorithms to a sample of lung tumors. PET and 4D CT were performed in the same imaging session for 23 patients (24 tumors) for radiation therapy planning. Internal target volumes (ITVs) were autosegmented on maximum intensity projection (MIP) of cine CT. ITVs were delineated on PET using the following methods: 15%, 35%, and 42% of maximum activity concentration, standardized uptake value (SUV) of 2.5 g/mL, 15% of mean activity concentration plus background, a linear function of mean SUV, and the VMSBR model. Predicted threshold values from each method were compared to measured optimal threshold values, and resulting volume magnitudes were compared to cine‐CT‐derived ITV Correlation between predicted and measured threshold values ranged from slopes of 0.29 for the simplest single‐threshold techniques to 0.90 for the VMSBR technique. R2 values ranged from 0.07 for the simplest single‐threshold techniques to 0.86 for the VMSBR technique. The VMSBR segmentation technique that included volume, motion, and source‐to‐background ratio, produced accurate ITVs in patients when compared with cine‐CT‐derived ITV. PACS number: 87.57.nm


Medical Physics | 2015

TH-CD-304-02: Clinical Uncertainty of in Vivo Dosimetry for Intensity-Modulated Radiation Therapy Using Optically-Stimulated Luminescent Dosimeters

A.C. Riegel; A Rea; A Kuruvilla; G Gill; S Souri; A. Kapur; Y Cao; A Jamshidi

Purpose: Several studies have reported the physical properties of optically-stimulated luminescent dosimeters (OSLDs) and suggest their efficacy for clinical in vivo dosimetry, but few publications have assessed the clinical uncertainties associated with OSLD-based in vivo dosimetry for conformal and intensity-modulated treatment. The purpose of the current work is to identify and characterize clinical uncertainties for OSLD-based in vivo dosimetry. Methods: OSLDs are placed in dosimetrically-appropriate locations on a weekly basis, covered with small 5 mm bolus squares, exposed during patient treatment, read, and compared with doses predicted from the treatment planning system. Six (6) parameters were identified as significant contributors to uncertainty in the process: Inherent physical OSLD uncertainty (σ_ OSLD), OSLD reader uncertainty (σ_reader), dose calculation uncertainty in the build-up region (σ _calc), uncertainty of depth for planned dose (σ_d), dosimetric uncertainty due to daily image-guided shifts (σ_ s), and placement uncertainty (σ_p). σ_d, σ_ s, and σ_p were estimated by analyzing clinical OSLD dosimetry for inverse-planned intensity-modulated treatment plans (prostate, lung, and head-and-neck) and field-in-field intensity-modulated treatment plans (breast). Total uncertainty was estimated by summing the 6 components in quadrature. Results: σ_OSLD was defined by the manufacturer (±3.0%). σ_calc was assumed to be approximately ±5.0% at 5 mm depth from other works in the literature. σ_reader and σ_s were measured to be ±1.0 and ±5.8% at 5 mm depth respectively. σ_p was found to be ±3.6% for breast, ±4.2% for prostate, ±4.4% for lung, and ±10.6% for head-and-neck. Total uncertainty was ±9.0% for breast, ±11.5% for prostate, ±13.2% for lung, and ±16.1% for head-and-neck. Conclusion: Site-specific clinical uncertainty for a limited selection of sites ranged from ±9.0% to ±16.1%. The largest components were image-guided shifts and estimated placement uncertainty. A wider selection of anatomical sites, site-specific correction factors, and clinical tolerance/action level guidelines will be presented.

Collaboration


Dive into the A.C. Riegel's collaboration.

Top Co-Authors

Avatar

Tinsu Pan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Louis Potters

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar

Osama Mawlawi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

A Jamshidi

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar

A. Kapur

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X Sun

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

G Gill

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar

J. Antone

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar

Y Cao

North Shore-LIJ Health System

View shared research outputs
Researchain Logo
Decentralizing Knowledge