A. C. Robin
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. C. Robin.
Astronomy and Astrophysics | 2003
A. C. Robin; C. Reylé; S. Derrière; Sebastien Picaud
Since the Hipparcos mission and recent large scale surveys in the optical and the near-infrared, new constraints have been obtained on the structure and evolution history of the Milky Way. The population synthesis approach is a useful tool to interpret such data sets and to test scenarios of evolution of the Galaxy. We present here new constraints on evolution parameters obtained from the Besancon model of population synthesis and analysis of optical and near-infrared star counts. The Galactic potential is computed self-consistently, in agreement with Hipparcos results and the observed rotation curve. Constraints are posed on the outer bulge structure, the warped and flared disc, the thick disc and the spheroid populations. The model is tuned to produce reliable predictions in the visible and the near-infrared in wide photometric bands from U to K. Finally, we describe applications such as photometric and astrometric simulations and a new classification tool based on a Bayesian probability estimator, which could be used in the framework of Virtual Observatories. As examples, samples of simulated star counts at different wavelengths and directions are also given.
The Astrophysical Journal | 2015
Michael R. Hayden; Jo Bovy; Jon A. Holtzman; David L. Nidever; Jonathan C. Bird; David H. Weinberg; Brett H. Andrews; Steven R. Majewski; Carlos Allende Prieto; Friedrich Anders; Timothy C. Beers; Dmitry Bizyaev; Cristina Chiappini; Katia Cunha; Peter M. Frinchaboy; D. A. García-Hernández; Ana G. Pérez; Léo Girardi; Paul Harding; Frederick R. Hearty; Jennifer A. Johnson; Szabolcs Mészáros; Ivan Minchev; Robert W. O’Connell; Kaike Pan; A. C. Robin; Ricardo P. Schiavon; Donald P. Schneider; Mathias Schultheis; Matthew Shetrone
Using a sample of 69,919 red giants from the SDSS-III/APOGEE Data Release 12, we measure the distribution of stars in the [/Fe] versus [Fe/H] plane and the metallicity distribution functions (MDFs) across an unprecedented volume of the Milky Way disk, with radius 3 < R < 15 kpc and height kpc. Stars in the inner disk (R < 5 kpc) lie along a single track in [/Fe] versus [Fe/H], starting with -enhanced, metal-poor stars and ending at [/Fe] ∼ 0 and [Fe/H] ∼ +0.4. At larger radii we find two distinct sequences in [/Fe] versus [Fe/H] space, with a roughly solar- sequence that spans a decade in metallicity and a high- sequence that merges with the low- sequence at super-solar [Fe/H]. The location of the high- sequence is nearly constant across the disk.
The Astronomical Journal | 2015
Jon A. Holtzman; Matthew Shetrone; Jennifer A. Johnson; Carlos Allende Prieto; Friedrich Anders; Brett H. Andrews; Timothy C. Beers; Dmitry Bizyaev; Michael R. Blanton; Jo Bovy; R. Carrera; S. Drew Chojnowski; Katia Cunha; Daniel J. Eisenstein; Diane Feuillet; Peter M. Frinchaboy; Jessica Galbraith-Frew; Ana G. Pérez; D. A. García-Hernández; Sten Hasselquist; Michael R. Hayden; Frederick R. Hearty; Inese I. Ivans; Steven R. Majewski; Sarah L. Martell; Szabolcs Mészáros; Demitri Muna; David L. Nidever; Duy Cuong Nguyen; Robert W. O’Connell
The SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey operated from 2011–2014 using the APOGEE spectrograph, which collects high-resolution (R ~ 22,500), near-IR (1.51–1.70 µm) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data products that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters (Teff , log g, [M/H], [a/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; it is smaller for some elemental abundances within more limited ranges and at high signal-to-noise ratio. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1–0.2 dex. Uncertainties may be larger at cooler temperatures (Teff < 4000 K). Access to the public data release and data products is described, and some guidance for using the data products is provided.
The Astronomical Journal | 2012
Andrea Kunder; Andreas Koch; R. Michael Rich; Roberto De Propris; Christian D. Howard; Scott A. Stubbs; Christian I. Johnson; Juntai Shen; Yougang G. Wang; A. C. Robin; John Kormendy; Mario Soto; Peter M. Frinchaboy; David B. Reitzel; HongSheng Zhao; L. Origlia
We present new radial velocity measurements from the Bulge Radial Velocity Assay, a large-scale spectroscopic survey of M-type giants in the Galactic bulge/bar region. The sample of ~4500 new radial velocities, mostly in the region –10° < l < +10° and b ≈ –6°, more than doubles the existent published data set. Our new data extend our rotation curve and velocity dispersion profile to +20°, which is ~2.8 kpc from the Galactic center. The new data confirm the cylindrical rotation observed at –6° and –8° and are an excellent fit to the Shen et al. N-body bar model. We measure the strength of the TiOe molecular band as a first step toward a metallicity ranking of the stellar sample, from which we confirm the presence of a vertical abundance gradient. Our survey finds no strong evidence of previously unknown kinematic streams. We also publish our complete catalog of radial velocities, photometry, TiO band strengths, and spectra, which is available at the Infrared Science Archive as well as at UCLA.
Astronomy and Astrophysics | 2012
A. C. Robin; X. Luri; C. Reylé; Y. Isasi; E. Grux; S. Blanco-Cuaresma; F. Arenou; C. Babusiaux; M. Belcheva; R. Drimmel; C. Jordi; A. Krone-Martins; E. Masana; J. C. Mauduit; F. Mignard; Nami Mowlavi; Brigitte Rocca-Volmerange; P. Sartoretti; Eric Slezak; A. Sozzetti
Context. This study has been developed in the framework of the computational simulations that are executed for the preparation of the ESA Gaia astrometric mission. Aims. We focus on describing the objects and characteristics that Gaia will potentially observe without taking into consideration instrumental effects (detection efficiency, observing errors). Methods. The theoretical Universe model prepared for the Gaia simulation has been statistically analysed at a given time. Ingredients of the model are described, with the greatest emplasis on the stellar content, the double and multiple stars, and variability. Results. In this simulation the errors have not yet been included. Hence we estimated the number of objects and their theoretical photometric, astrometric and spectroscopic characteristics if they are perfectly detected. We show that Gaia will be able to potentially observe 1.1 billion of stars (single or part of multiple star systems) of which about 2% are variable stars and 3% have one or two exoplanets. At the extragalactic level, observations will be potentially composed of several millions of galaxies, half a million to 1 million quasars and about 50 000 supernovae that will occur during the five years of the mission.
The Astrophysical Journal | 2014
David L. Nidever; Jo Bovy; Jonathan C. Bird; Brett H. Andrews; Michael R. Hayden; Jon A. Holtzman; Steven R. Majewski; Verne V. Smith; A. C. Robin; Ana G. Pérez; Katia Cunha; Carlos Allende Prieto; Gail Zasowski; Ricardo P. Schiavon; Jennifer A. Johnson; David H. Weinberg; Diane Feuillet; Donald P. Schneider; Matthew Shetrone; Jennifer S. Sobeck; D. A. García-Hernández; Olga Zamora; Hans-Walter Rix; Timothy C. Beers; John C. Wilson; Robert W. O'Connell; Ivan Minchev; Cristina Chiappini; Friedrich Anders; Dmitry Bizyaev
We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (~10%). Using simple galactic chemical evolution models we derive an average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10 1/yr, which is quite close to the nearly-constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE) of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track this cannot hold in the outer Galaxy, requiring instead a mix of two or more populations with distinct enrichment histories.
Astronomy and Astrophysics | 2008
P. Delorme; X. Delfosse; Loic Albert; E. Artigau; T. Forveille; C. Reylé; F. Allard; Derek Homeier; A. C. Robin; Chris J. Willott; Michael C. Liu; Trent J. Dupuy
the date of receipt and acceptance should be inserted later Abstract. We report the discovery of CFBDS J005910.90-011401.3 (hereafter CFBDS0059), the coolest brown dwarf iden- tified to date. We found CFBDS0059 using iand zimages from the Canada-France-Hawaii Telescope (CFHT), and present optical and near-infrared photometry, Keck laser guide sta r adaptive optics imaging, and a complete near-infrared spe ctrum, from 1.0 to 2.2� m. A side to side comparison of the near-infrared spectra of CFBDS0059 and ULAS J003402.77-005206.7 (hereafter ULAS0034), previously the coolest known brown dwarf, indicates that CFBDS0059 is∼ 50 ± 15K cooler. We estimate a temperature of Teff∼ 620K and gravity of log g∼ 4.75. Evolutionary models translate these parameters into an age of 1-5 Gyr and a mass of 15− 30 MJup. We estimate a photometric distance of∼13pc, which puts CFBDS0059 within easy reach of accurate parallax measurements. Its large proper m otion suggests membership in the older population of the thin disk. The spectra of both CFBDS0059 and ULAS J0034 shows probable absorption by a wide ammonia band on the blue side of the H-band flux peak. If, as we expect, that feature deepens furthe r for still lower effective temperatures, its appearance will become a natural breakpoint for the transition between the T spectr al class and the new Y spectral type. CFBDS0059 and ULAS J0034 would then be the first Y0 dwarfs.
Astronomy and Astrophysics | 2014
Friedrich Anders; C. Chiappini; B. Santiago; Helio J. Rocha-Pinto; Léo Girardi; L. N. da Costa; M. A. G. Maia; M. Steinmetz; Ivan Minchev; Mathias Schultheis; C. Boeche; A. Miglio; Josefina Montalbán; Donald P. Schneider; Timothy C. Beers; Katia Cunha; C. Allende Prieto; E. Balbinot; Dmitry Bizyaev; D. E. Brauer; J. Brinkmann; Peter M. Frinchaboy; A. E. García Pérez; Michael R. Hayden; Frederick R. Hearty; J. Holtzman; Jennifer A. Johnson; Karen Kinemuchi; S. R. Majewski; Elena Malanushenko
We investigate the chemo-kinematic properties of the Milky Way disc by exploring the first year of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), and compare our results to smaller optical high-resolution samples in the literature, as well as results from lower resolution surveys such as GCS, SEGUE and RAVE. We start by selecting a high-quality sample in terms of chemistry (
Astronomy and Astrophysics | 2013
A. S. Rajpurohit; C. Reylé; F. Allard; Derek Homeier; M. Schultheis; Michael S. Bessell; A. C. Robin
\sim
Astronomy and Astrophysics | 2013
V. Zh. Adibekyan; P. Figueira; N. C. Santos; A. A. Hakobyan; S. G. Sousa; G. Pace; E. Delgado Mena; A. C. Robin; G. Israelian; J. I. González Hernández
20.000 stars) and, after computing distances and orbital parameters for this sample, we employ a number of useful subsets to formulate constraints on Galactic chemical and chemodynamical evolution processes in the Solar neighbourhood and beyond (e.g., metallicity distributions -- MDFs, [