Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A Chanalaris is active.

Publication


Featured researches published by A Chanalaris.


Arthritis & Rheumatism | 2012

Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo

Annika Burleigh; A Chanalaris; Matthew D. Gardiner; C. Driscoll; Olga Boruc; Jeremy Saklatvala; Tonia L. Vincent

OBJECTIVE Mechanical joint loading is critical for the development of osteoarthritis (OA). Although once regarded as a disease of cartilage attrition, OA is now known to be controlled by the expression and activity of key proteases, such as ADAMTS-5, that drive matrix degradation. This study was undertaken to investigate the link between protease expression and mechanical joint loading in vivo. METHODS We performed a microarray analysis of genes expressed in the whole joint following surgical induction of murine OA (by cutting the medial meniscotibial ligament). Gene expression changes were validated by reverse transcriptase-polymerase chain reaction in whole joints and microdissected tissues of the joint, including the articular cartilage, meniscus, and epiphysis. Following surgery, mouse joints were immobilized, either by prolonged anesthesia or by sciatic neurectomy. RESULTS Many genes were regulated in the whole joint within 6 hours of surgical induction of OA in the mouse. These included Arg1, Ccl2, Il6, Tsg6, Mmp3, Il1b, Adamts5, Adamts4, and Adamts1. All of these were significantly regulated in the articular cartilage. When joints were immobilized by prolonged anesthesia, regulation of the vast majority of genes was abrogated. When joints were immobilized by sciatic neurectomy, regulation of selected genes was abrogated, and OA was prevented up to 12 weeks postsurgery. CONCLUSION These findings indicate that gene expression in the mouse joint following the induction of OA is rapid and highly mechanosensitive. Regulated genes include the known pathogenic protease ADAMTS-5. Targeting the mechanosensing mechanisms of joint tissue may offer new strategies for disease modification.


Circulation | 2002

K-ATP channel gene expression is induced by urocortin and mediates its cardioprotective effect

Kevin M. Lawrence; A Chanalaris; Tiziano M. Scarabelli; Mike Hubank; Evasio Pasini; Paul A. Townsend; Laura Comini; R. Ferrari; A. Tinker; Anastasis Stephanou; Richard A. Knight; D.S. Latchman

Background—Urocortin is a novel cardioprotective agent that can protect cardiac myocytes from the damaging effects of ischemia/reperfusion both in culture and in the intact heart and is effective when given at reperfusion. Methods and Results—We have analyzed global changes in gene expression in cardiac myocytes after urocortin treatment using gene chip technology. We report that urocortin specifically induces enhanced expression of the Kir 6.1 cardiac potassium channel subunit. On the basis of this finding, we showed that the cardioprotective effect of urocortin both in isolated cardiac cells and in the intact heart is specifically blocked by both generalized and mitochondrial-specific KATP channel blockers, whereas the cardioprotective effect of cardiotrophin-1 is unaffected. Conversely, inhibiting the Kir 6.1 channel subunit greatly enhances cardiac cell death after ischemia. Conclusions—This is, to our knowledge, the first report of the altered expression of a KATP channel subunit induced by a cardioprotective agent and demonstrates that KATP channel opening is essential for the effect of this novel cardioprotective agent.


Journal of Molecular and Cellular Cardiology | 2003

Protective effects of the urocortin homologues stresscopin (SCP) and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury in rat neonatal cardiomyocytes

A Chanalaris; Kevin M. Lawrence; Anastasis Stephanou; R.D. Knight; S.Y. Hsu; Aaron J. W. Hsueh; D.S. Latchman

Urocortin (UCN), a member of the Corticotropin-Releasing Factor (CRF) family of peptides is a well described cardioprotective agent. UCN is able to bind to two types of G-protein coupled receptors: CRF receptor type 1 (CRFR1) and CRF receptor type 2 (CRFR2), whereas, two homologues of UCN, stresscopin (SCP) or also known as urocortin III (UCNIII) and stresscopin related peptide (SRP), or urocortin II (UCNII), bind exclusively and with high affinity to CRFR2, we hypothesised that they will exhibit more pronounced cardioprotective effects than UCN. We show for the first time that SCP is expressed in rat cardiomyocytes and that the levels of SRP and SCP are increased by hypoxic stress. All three peptides have potent cardioprotective effects in cells exposed to hypoxia/reoxygenation. When used at 10(-8) M they increased the amount of live cells by 25% when added prior to hypoxia, and by 20% when UCN and SCP were added at the onset of reoxygenation. In addition, the peptides are equally are more potent antiapoptotic factors than UCN. The antiapoptotic effects of SCP were more pronounced than SRP and UCN at a concentration of 10(-10) M. Furthermore, SCP and SRP protect cardiomyocytes better than UCN at concentrations up to and including 10(-10) M and reduced the amount of TUNEL positive cells almost by half at concentrations of 10(-12) to 10(-10) M. More importantly, we demonstrate that SCP and SRP are able to protect cardiomyocytes even if they are administered after the hypoxic insult and prior to reoxygenation. In this case SCP was more potent than UCN and SRP at 10(-12) M and both SCP and SRP exhibited higher protection at 10(-8) M compared to UCN. Cardioprotection of cardiomyocytes by 10(-8) M of peptides was abolished when treated with 50 microM LY294002 or 100 microM PD98059, but not by 10 microM SB203580 prior to the hypoxic insult. Transfection of dominant negative Akt and MEK1 also blocked protection by the peptides, whereas dominant negative MEKK6 had no effects, demonstrating that SCP and SRP, like UCN, require activation of p42/44 Mitogen activated protein kinase and Akt/Protein Kinase B in order to produce their cardioprotective effects. In addition, we showed that SCP and UCN are potent activators of the p42/44 MAPK pathway, with SRP able to induce phosphorylation of p42/44 MAPK as well, albeit not as pronounced.


The FASEB Journal | 2005

Cardioprotection mediated by urocortin is dependent on PKCepsilon activation.

Kevin M. Lawrence; A. M. N. Kabir; M. Bellahcene; Sean M. Davidson; X. B. Cao; J. McCormick; R. A. Mesquita; Christopher J. Carroll; A Chanalaris; Paul A. Townsend; Mike Hubank; Anastasis Stephanou; Richard A. Knight; Michael Marber; D.S. Latchman

Urocortin (Ucn) is an endogenous cardioprotective agent that protects against the damaging effects of ischemia and reperfusion injury in vitro and in vivo. We have found that the mechanism of action of Ucn involves both acute activation of specific target molecules, and using Affymetrix (Santa Clara, CA) gene chip technology, altered gene expression of different end effector molecules. Here, from our gene chip data, we show that after a 24 h exposure to Ucn, there was a specific increase in mRNA and protein levels of the protein kinase C epsilon (PKCε) isozyme in primary rat cardiomyocytes compared with untreated cells and in the Langendorff perfused ex vivo heart. Furthermore, a short 10 min exposure of these cells to Ucn caused a specific translocation/activation of PKCε in vitro and in the Langendorff perfused ex vivo heart. The importance of the PKCε isozyme in cardioprotection and its relationship to cardioprotection produced by Ucn was assessed using PKCε‐specific inhibitor peptides. The inhibitor peptide, when introduced into cardiomyocytes, caused an increase in apoptotic cell death compared with control peptide after ischemia and reperfusion. When the inhibitor peptide was present with Ucn, the cardioprotective effect of Ucn was lost. This loss of cardioprotection by Ucn was also seen in whole hearts from PKCε knockout mice. These findings indicate that the cardioprotective effect of Ucn is dependent upon PKCε.


The FASEB Journal | 2003

Urocortin protects cardiac myocytes from ischemia/reperfusion injury by attenuating calcium-insensitive phospholipase A2 gene expression.

Kevin M. Lawrence; Tiziano M. Scarabelli; Lance Turtle; A Chanalaris; Paul A. Townsend; Christopher J. Carroll; Mike Hubank; Anastasis Stephanou; Richard A. Knight; David S. Latchman

We have used Affymetrix gene chip technology to look for changes in gene expression caused by a 24 h exposure of rat primary neonatal cardiac myocytes to the cardioprotective agent urocortin. We observed a 2.5‐fold down‐regulation at both the mRNA and protein levels of a specific calcium‐insensitive phospholipase A2 enzyme. Levels of lysophosphatidylcholine, a toxic metabolite of phospholipase A2, were lowered by 30% in myocytes treated with urocortin for 24 h and by 50% with the irreversible iPLA2 inhibitor bromoenol lactone compared with controls. Both 4 h ischemia and ischemia followed by 24 h reperfusion caused a significant increase in lysophosphatidylcholine concentration compared with controls. When these myocytes were pretreated with urocortin, the ischemia‐induced increase in lysophosphatidylcholine concentration was significantly lowered. Moreover, co‐incubation of cardiac myocytes with urocortin, or the specific phospholipase A2 inhibitor bromoenol lactone, reduces the cytotoxicity produced by lysophosphatidylcholine or ischemia/reperfusion. Similarly, in the intact heart ex vivo we found that cardiac damage measured by infarct size was significantly increased when lysophoshatidylcholine was applied during ischemia, compared with ischemia alone, and that pre‐treatment with both urocortin and bromoenol lactone reversed the increase in infarct size. This, to our knowledge, is the first study linking the cardioprotective effect of urocortin to a decrease in a specific enzyme protein and a subsequent decrease in the concentration of its cardiotoxic metabolite.


Blood | 2009

2-phenylacetylenesulfonamide (PAS) induces p53-independent apoptotic killing of B-chronic lymphocytic leukemia (CLL) cells

Andrew Steele; A G Prentice; Hoffbrand Av; Bc Yogashangary; S M Hart; Mark W. Lowdell; Edward Samuel; Janet North; Elisabeth P. Nacheva; A Chanalaris; Pd Kottaridis; Kate Cwynarski; Rg Wickremasinghe

We studied the actions of 2-phenylacetylenesulfonamide (PAS) on B-chronic lymphocytic leukemia (CLL) cells. PAS (5-20 microM) initiated apoptosis within 24 hours, with maximal death at 48 hours asassessed by morphology, cleavage of poly(ADP-ribose) polymerase (PARP), caspase 3 activation, and annexin V staining. PAS treatment induced Bax proapoptotic conformational change, Bax movement from the cytosol to the mitochondria, and cytochrome c release, indicating that PAS induced apoptosis via the mitochondrial pathway. PAS induced approximately 3-fold up-regulation of proapoptotic Noxa protein and mRNA levels. In addition, Noxa was found unexpectedly to be bound to Bcl-2 in PAS-treated cells. PAS treatment of CLL cells failed to up-regulate p53, suggesting that PAS induced apoptosis independently of p53. Furthermore, PAS induced apoptosis in CLL isolates with p53 gene deletion in more than 97% of cells. Normal B lymphocytes were as sensitive to PAS-induced Noxa up-regulation and apoptosis as were CLL cells. However, both T lymphocytes and bone marrow hematopoietic progenitor cells were relatively resistant to PAS. Our data suggest that PAS may represent a novel class of drug that induces apoptosis in CLL cells independently of p53 status by a mechanism involving Noxa up-regulation.


BMC Genomics | 2010

Deletions of Immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia

Elisabeth P. Nacheva; Diana Brazma; Anna Virgili; Julie Howard-Reeves; A Chanalaris; Katya Gancheva; Margarita D. Apostolova; Mikel Valgañon; Helen Mazzullo; Colin Grace

BackgroundChronic myelogenous leukemia (CML) results from the neoplastic transformation of a haematopoietic stem cell. The hallmark genetic abnormality of CML is a chimeric BCR/ABL1 fusion gene resulting from the Philadelphia chromosome rearrangement t(9;22)(q34;q11). Clinical and laboratory studies indicate that the BCR/ABL1 fusion protein is essential for initiation, maintenance and progression of CML, yet the event(s) driving the transformation from chronic phase to blast phase are poorly understood.ResultsHere we report multiple genome aberrations in a collection of 78 CML and 14 control samples by oligonucleotide array comparative genomic hybridization. We found a unique signature of genome deletions within the immunoglobulin heavy chain (IGH) and T cell receptor regions (TCR), frequently accompanied by concomitant loss of sequences within the short arm regions of chromosomes 7 and 9, including IKZF1, HOXA7, CDKN2A/2B, MLLT3, IFNA/B, RNF38, PAX5, JMJD2C and PDCD1LG2 genes.ConclusionsNone of these genome losses were detected in any of the CML samples with myeloid transformation, chronic phase or controls, indicating that their presence is obligatory for the development of a malignant clone with a lymphoid phenotype. Notably, the coincidental deletions at IGH and TCR regions appear to precede the loss of IKZF1 and/or p16 genes in CML indicating a possible involvement of RAG in these deletions.


Journal of Molecular and Cellular Cardiology | 2003

SAG attenuates apoptotic cell death caused by simulated ischaemia/reoxygenation in rat cardiomyocytes

A Chanalaris; Y Sun; D.S. Latchman; Anastasis Stephanou

Sensitive to apoptosis gene (SAG) is a novel RING finger protein that has been shown to be involved in protection against apoptotic cell death induced by oxidative stress in various cell types. As SAG has been previously shown to be expressed in the heart, we assessed its role in cardiac myocytes exposed to ischaemic stress. SAG expression was enhanced by hypoxia in neonatal cardiomyocytes as well as in the intact heart exposed to ischaemia/reperfusion. SAG levels remain elevated during the first 4 h of reoxygenation and return to control levels after 16 h of reoxygenation. We also show that overexpression of SAG in cardiac myocytes is able to protect against simulated ischaemia/reperfusion-induced apoptotic cell death. However, abrogation of the RING finger of the protein eliminates the anti-apoptotic properties of SAG. Furthermore, an antisense SAG construct enhances cell death, both in normoxic and hypoxic conditions. Hence, we conclude that SAG is a cardioprotective agent in cardiac cells exposed to ischaemic stress and an important protein involved in cardiomyocyte survival.


Arthritis & Rheumatism | 2013

Fibroblast Growth Factor 2 Drives Changes in Gene Expression Following Injury to Murine Cartilage In Vitro and In Vivo

Ka-Wing Chong; A Chanalaris; Annika Burleigh; Huilin Jin; F E Watt; Jeremy Saklatvala; Tonia L. Vincent

Objective The articular cartilage is known to be highly mechanosensitive, and a number of mechanosensing mechanisms have been proposed as mediators of the cellular responses to altered mechanical load. These pathways are likely to be important in tissue homeostasis as well as in the pathogenesis of osteoarthritis. One important injury-activated pathway involves the release of pericellular fibroblast growth factor 2 (FGF-2) from the articular cartilage. Using a novel model of murine cartilage injury and surgically destabilized joints in mice, we examined the extent to which FGF-2 contributes to the cellular gene response to injury. Methods Femoral epiphyses from 5-week-old wild-type mice were avulsed and cultured in serum-free medium. Explant lysates were Western blotted for phospho-JNK, phospho-p38, and phospho-ERK or were fixed for immunohistochemical analysis of the nuclear translocation of p65 (indicative of NF-κB activation). RNA was extracted from injured explants, rested explants that had been stimulated with recombinant FGF-2 or FGF-18, or whole joints from either wild-type mice or FGF-2−/− mice. Reverse transcription–polymerase chain reaction was performed to examine a number of inflammatory response genes that had previously been identified in a microarray analysis. Results Murine cartilage avulsion injury resulted in rapid activation of the 3 MAP kinase pathways as well as NF-κB. Almost all genes identified in murine joints following surgical destabilization were also regulated in cartilage explants upon injury. Many of these genes, including those for activin A (Inhba), tumor necrosis factor–stimulated gene 6 (Tnfaip6), matrix metalloproteinase 19 (Mmp19), tissue inhibitor of metalloproteinases 1 (Timp1), and podoplanin (Pdpn), were significantly FGF-2 dependent following injury to cartilage in vitro and to joint tissues in vivo. Conclusion FGF-2–dependent gene expression occurs in vitro and in vivo in response to cartilage/joint injury in mice.


Osteoarthritis and Cartilage | 2015

Transcriptional analysis of micro-dissected articular cartilage in post-traumatic murine osteoarthritis.

Matthew D. Gardiner; Tonia L. Vincent; C. Driscoll; Annika Burleigh; George Bou-Gharios; Jeremy Saklatvala; Hiroyuki Nagase; A Chanalaris

Summary Objective Identify gene changes in articular cartilage of the medial tibial plateau (MTP) at 2, 4 and 8 weeks after destabilisation of the medial meniscus (DMM) in mice. Compare our data with previously published datasets to ascertain dysregulated pathways and genes in osteoarthritis (OA). Design RNA was extracted from the ipsilateral and contralateral MTP cartilage, amplified, labelled and hybridized on Illumina WGv2 microarrays. Results were confirmed by real-time polymerase chain reaction (PCR) for selected genes. Results Transcriptional analysis and network reconstruction revealed changes in extracellular matrix and cytoskeletal genes induced by DMM. TGFβ signalling pathway and complement and coagulation cascade genes were regulated at 2 weeks. Fibronectin (Fn1) is a hub in a reconstructed network at 2 weeks. Regulated genes decrease over time. By 8 weeks fibromodulin (Fmod) and tenascin N (Tnn) are the only dysregulated genes present in the DMM operated knees. Comparison with human and rodent published gene sets identified genes overlapping between our array and eight other studies. Conclusions Cartilage contributes a minute percentage to the RNA extracted from the whole joint (<0.2%), yet is sensitive to changes in gene expression post-DMM. The post-DMM transcriptional reprogramming wanes over time dissipating by 8 weeks. Common pathways between published gene sets include focal adhesion, regulation of actin cytoskeleton and TGFβ. Common genes include Jagged 1 (Jag1), Tetraspanin 2 (Tspan2), neuroblastoma, suppression of tumourigenicity 1 (Nbl1) and N-myc downstream regulated gene 2 (Ndrg2). The concomitant genes and pathways we identify may warrant further investigation as biomarkers or modulators of OA.

Collaboration


Dive into the A Chanalaris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Brazma

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Grace

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge