Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Cumming is active.

Publication


Featured researches published by A. Cumming.


Classical and Quantum Gravity | 2012

Design and development of the advanced LIGO monolithic fused silica suspension

A. Cumming; A. S. Bell; L. Barsotti; M. A. Barton; G. Cagnoli; Deborah J. Cook; L. Cunningham; M. Evans; G. Hammond; G. M. Harry; A. Heptonstall; J. Hough; R. Jones; R. Kumar; R. Mittleman; N. A. Robertson; S. Rowan; B. Shapiro; K. A. Strain; K. V. Tokmakov; C. I. Torrie; A. A. Van Veggel

The detection of gravitational waves remains one of the most challenging prospects faced by experimental physicists. One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. Suspension thermal noise will be an important noise source at operating frequencies between approximately 10 and 30 Hz, and it results from a combination of thermoelastic damping, surface loss and bulk loss associated with the suspension fibres, and weld loss from their attachment. Its effects can be reduced by minimizing thermoelastic loss and optimizing pendulum dilution factor via the appropriate choice of geometry of the suspension fibre and attachment geometry. This paper will discuss the design and fabrication of a prototype of the fused silica suspension stage for use in the advanced LIGO (aLIGO) detector network, analysing in detail the design of the fused silica attachment pieces (ears), together with the suspension assembly techniques. We also present a full thermal noise analysis of the prototype suspension, taking into account for the first time the precise shape of the actual fibres used, and weld loss. We shall demonstrate the suitability of this suspension for installation into aLIGO.


Classical and Quantum Gravity | 2012

Update on quadruple suspension design for Advanced LIGO

S. Aston; M. A. Barton; A. S. Bell; N. Beveridge; B. Bland; A. Brummitt; G. Cagnoli; C. A. Cantley; L. Carbone; A. Cumming; L. Cunningham; R. M. Cutler; R. J. S. Greenhalgh; G. Hammond; K. Haughian; T. Hayler; A. Heptonstall; J. Heefner; D. Hoyland; J. Hough; R. Jones; J. S. Kissel; R. Kumar; N. A. Lockerbie; D. Lodhia; I. W. Martin; P. G. Murray; J. O’Dell; M. V. Plissi; S. Reid

We describe the design of the suspension systems for the major optics for Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. The design is based on that used in GEO600—the German/UK interferometric gravitational wave detector, with further development to meet the more stringent noise requirements for Advanced LIGO. The test mass suspensions consist of a four-stage or quadruple pendulum for enhanced seismic isolation. To minimize suspension thermal noise, the final stage consists of a silica mirror, 40 kg in mass, suspended from another silica mass by four silica fibres welded to silica ears attached to the sides of the masses using hydroxide-catalysis bonding. The design is chosen to achieve a displacement noise level for each of the seismic and thermal noise contributions of 10^(−19) m/√Hz at 10 Hz, for each test mass. We discuss features of the design which has been developed as a result of experience with prototypes and associated investigations.


Review of Scientific Instruments | 2011

Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions.

A. Heptonstall; M. A. Barton; A. S. Bell; G. Cagnoli; C. A. Cantley; D. R. M. Crooks; A. Cumming; A. Grant; G. Hammond; G. M. Harry; J. Hough; R. Jones; D. Kelley; R. Kumar; I. W. Martin; N. A. Robertson; S. Rowan; K. A. Strain; K. V. Tokmakov; M. van Veggel

In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO(2) laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance.


Classical and Quantum Gravity | 2009

Finite element modelling of the mechanical loss of silica suspension fibres for advanced gravitational wave detectors

A. Cumming; A. Heptonstall; R. Kumar; W. Cunningham; C. I. Torrie; M. A. Barton; K. A. Strain; J. Hough; S. Rowan

Detection of gravitational waves remains one of the most challenging problems faced by experimental physicists. One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. Detector suspension thermal noise will be an important noise source at operating frequencies between approximately 10 and 30 Hz, and results from a combination of thermoelastic damping, surface and bulk losses associated with the suspension fibres. However its effects can be reduced by minimizing the thermoelastic loss and optimization of pendulum dilution factor via appropriate choice of suspension fibre and attachment geometry. This paper will discuss finite element modelling and associated analysis of the loss in quasi-monolithic silica fibre suspensions for future advanced gravitational wave detectors.


Classical and Quantum Gravity | 2014

Silicon mirror suspensions for gravitational wave detectors

A. Cumming; L. Cunningham; G. Hammond; K. Haughian; J. Hough; Stefanie Kroker; I. W. Martin; R. Nawrodt; S. Rowan; C. Schwarz; A. A. Van Veggel

One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. This paper reports results of analytical and experimental studies of the limits to thermal noise performance of cryogenic silicon test mass suspensions set by two constraints on suspension fibre dimensions: the minimum dimensions required to allow conductive cooling for extracting incident laser beam heat deposited in the mirrors; and the minimum dimensions of fibres (set by their tensile strength) which can support test masses of the size envisaged for use in future detectors. We report experimental studies of breaking strength of silicon ribbons, and resulting design implications for the feasibility of suspension designs for future gravitational wave detectors using silicon suspension fibres. We analyse the implication of this study for thermal noise performance of cryogenically cooled silicon suspensions.


Classical and Quantum Gravity | 2012

Reducing the suspension thermal noise of advanced gravitational wave detectors

G. Hammond; A. Cumming; J. Hough; R. Kumar; K. V. Tokmakov; S. Reid; S. Rowan

The international network of gravitational wave detectors is currently undergoing sensitivity upgrades (aLIGO, aVIRGO and GEO-HF) which will lead to the first detection and subsequent observation of a rich variety of astrophysical sources. To obtain a factor of 10 improvement in the strain sensitivity at low frequencies requires the use of ultralow mechanical loss materials and monolithic fused silica suspensions, optimized mirror coatings and the development of cutting edge techniques to super-polish and figure the interferometer optics. The possibility of applying incremental upgrades to the second generation detectors can be realized by making small but significant changes to the suspensions and/or optical mirror coatings. This includes the use of longer suspensions to increase the dissipation dilution, the development of techniques to reduce the surface loss in fused silica suspensions and methods to lower the mechanical loss from the metal springs used to support the test mass. Such upgrades can potentially improve the strain sensitivity by a factor of 2.5. Looking beyond 2015, the development of techniques to further improve the sensitivity by one order of magnitude are discussed. The third generation detectors will be located underground and will be operated at cryogenic temperatures. At low temperatures, silicon is a particularly promising candidate material as it displays good thermal conductivity, high tensile strength and zero thermal expansion coefficient at 120 K, 18 K and T ? 0 K.


Classical and Quantum Gravity | 2010

Investigation of mechanical dissipation in CO2 laser-drawn fused silica fibres and welds

A. Heptonstall; M. A. Barton; C. A. Cantley; A. Cumming; Geppo Cagnoli; J. Hough; Russell Jones; R. Kumar; I. W. Martin; S. Rowan; C. I. Torrie; Steven Zech

The planned upgrades to the LIGO gravitational wave detectors include monolithic mirror suspensions to reduce thermal noise. The mirrors will be suspended using CO2 laser-drawn fused silica fibres. We present here measurements of mechanical dissipation in synthetic fused silica fibres drawn using a CO2 laser. The level of dissipation in the surface layer is investigated and is found to be at a similar level to fibres produced using a gas flame. Also presented is a method for examining dissipation at welded interfaces, showing clear evidence of the existence of this loss mechanism which forms an additional component of the total detector thermal noise. Modelling of a typical detector suspension configuration shows that the thermal noise contribution from this loss source will be negligible.


Classical and Quantum Gravity | 2015

Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors

A. Cumming; K. Craig; I. W. Martin; R. Bassiri; L. Cunningham; M. M. Fejer; James S. Harris; K. Haughian; D. Heinert; B. Lantz; Angie Lin; A. Markosyan; R. Nawrodt; R. Route; S. Rowan

Thermal noise associated with the dielectric optical coatings used to form the mirrors of interferometric gravitational wave detectors is expected to be an important limit to the sensitivity of future detectors. Improvements in detector performance are likely to require coating materials of lower mechanical dissipation. Typically, current coatings use multiple alternating layers of ion-beam-sputtered amorphous silica and tantalum pentoxide (doped with titania). We present here measurements of the mechanical dissipation of promising alternative crystalline coatings that use multi-layers of single crystal gallium phosphide (GaP) and aluminium gallium phosphide (AlGaP) that are epitaxially grown and lattice matched to a silicon substrate. Analysis shows that the dissipation of the crystalline coating materials appears to be significantly lower than that of the currently used amorphous coatings, potentially enabling a reduction of coating thermal noise in future gravitational wave detectors.


Classical and Quantum Gravity | 2014

Design of a speed meter interferometer proof-of-principle experiment

Christian Gräf; B. Barr; A. S. Bell; F. Campbell; A. Cumming; S. L. Danilishin; N. A. Gordon; G. Hammond; J. Hennig; E. A. Houston; S. H. Huttner; Russell Jones; S. Leavey; H. Lück; J. Macarthur; M. Marwick; S. Rigby; R. Schilling; B. Sorazu; A. P. Spencer; S. Steinlechner; K. A. Strain; S. Hild

The second generation of large scale interferometric gravitational wave (GW) detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the worldʼs first Sagnac speed meter (SSM) interferometer, which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify SSM for further research towards an implementation in a future generation large scale GW detector, such as the planned Einstein telescope observatory.


Review of Scientific Instruments | 2011

Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors

A. Cumming; Russell Jones; M. A. Barton; G. Cagnoli; C. A. Cantley; D. R. M. Crooks; G. Hammond; A. Heptonstall; J. Hough; S. Rowan; K. A. Strain

Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∼10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions.

Collaboration


Dive into the A. Cumming's collaboration.

Top Co-Authors

Avatar

S. Rowan

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Heptonstall

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Jones

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

R. Kumar

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

M. A. Barton

National Science Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge