A. D. Mednykh
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. D. Mednykh.
Siberian Mathematical Journal | 1995
A. Yu. Vesnin; A. D. Mednykh
A. Yu. Vesnin and A. D. Mednykh UDC 515.16 + 512.817.7 This article is devoted to the study of three-dimensional compact orientable hyperbolic manifolds connected with the Fibonacci groups. The Fibonacci groups F(2, m) = (Zl, z2,..., z,n : ziZi+l = zi+2, { mod m) were introduced by J. Conway [1]. The first natural question connected with these groups was whether they are finite or not [1]. It is known from [2-6] that the group F(2, m) is finite if and only if m = 1,2,3, 4,5, 7. Some algebraic generalizations of the groups
Journal of Knot Theory and Its Ramifications | 1998
A. D. Mednykh; Andrei Vesnin
Closed hyperbolic 3-manifolds obtained by Dehn surgeries on the Whitehead link yield interesting examples of manifolds of small volume. In the present paper these manifolds are described as 2-fold coverings of the 3-sphere branched over 3-bridge links. As a corollary, maximally symmetric -manifolds of small volume are obtained.
Mathematical Notes | 2009
D. A. Derevnin; A. D. Mednykh
AbstractThe Lambert cube Q(α, β, γ) is one of the simplest polyhedra. By definition, this is a combinatorial cube with dihedral angles α, β, and γ at three noncoplanar edges and with right angles at all other edges. The volume of the Lambert cube in hyperbolic space was obtained by R. Kellerhals (1989) in terms of the Lobachevskii function Λ(x). In the present paper, we find the volume of the Lambert cube in spherical space. It is expressed in terms of the function % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaGaeqiTdqgcbaGae8hkaGIaeqySdeMae8hlaWIa % eqiUdeNae8xkaKIae8xpa0Zaa8qmaeaacyGGSbaBcqGGVbWBcqGGNb % WzcqGGOaakcqaIXaqmcqGHsislcyGGJbWycqGGVbWBcqGGZbWCcqaI % YaGmcqaHXoqycyGGJbWycqGGVbWBcqGGZbWCcqaIYaGmrmqr1ngBPr % gitLxBI9gBaGGbaiab+r8a0jabcMcaPaWcbaGaeqiUdehabaaccaGa % e0hWdaNaei4la8IaeGOmaidaniabgUIiYdGcdaWcaaqaaiabdsgaKj % ab+r8a0bqaaiGbcogaJjabc+gaVjabcohaZjabikdaYiab+r8a0baa % cqGGSaalaaa!70FD!
Mathematical Notes | 1999
A. Yu. Vesnin; A. D. Mednykh
Uspekhi Matematicheskikh Nauk | 2005
Дмитрий Александрович Деревнин; Dmitrii Aleksandrovich Derevnin; Александр Дмитриевич Медных; A. D. Mednykh
\delta (\alpha ,\theta ) = \int_\theta ^{\pi /2} {\log (1 - \cos 2\alpha \cos 2\tau )} \frac{{d\tau }} {{\cos 2\tau }},
Journal of Knot Theory and Its Ramifications | 2014
Ji-Young Ham; A. D. Mednykh; Vladimir Petrov
Boletín de la Sociedad Matemática Mexicana: Tercera Serie | 2004
A. D. Mednykh; John R. Parker; Andrei Vesnin
which can be regarded as the spherical analog of the function % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaGaeuiLdqecbaGae8hkaGIaeqySdeMae8hlaWIa % eqiUdeNae8xkaKIae8xpa0Jaeu4MdWKaeiikaGIaeqySdeMaey4kaS % IaeqiUdeNaeiykaKIaeyOeI0Iaeu4MdWKaeiikaGIaeqySdeMaeyOe % I0IaeqiUdeNaeiykaKIaeiOla4caaa!54BB!
Siberian Mathematical Journal | 1999
A. Yu. Vesnin; A. D. Mednykh
Siberian Mathematical Journal | 1996
A. Yu. Vesnin; A. D. Mednykh
\Delta (\alpha ,\theta ) = \Lambda (\alpha + \theta ) - \Lambda (\alpha - \theta ).
Siberian Mathematical Journal | 1999
A. Yu. Vesnin; A. D. Mednykh