Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. D. Mednykh is active.

Publication


Featured researches published by A. D. Mednykh.


Siberian Mathematical Journal | 1995

Hyperbolic volumes of Fibonacci manifolds

A. Yu. Vesnin; A. D. Mednykh

A. Yu. Vesnin and A. D. Mednykh UDC 515.16 + 512.817.7 This article is devoted to the study of three-dimensional compact orientable hyperbolic manifolds connected with the Fibonacci groups. The Fibonacci groups F(2, m) = (Zl, z2,..., z,n : ziZi+l = zi+2, { mod m) were introduced by J. Conway [1]. The first natural question connected with these groups was whether they are finite or not [1]. It is known from [2-6] that the group F(2, m) is finite if and only if m = 1,2,3, 4,5, 7. Some algebraic generalizations of the groups


Journal of Knot Theory and Its Ramifications | 1998

COVERING PROPERTIES OF SMALL VOLUME HYPERBOLIC 3-MANIFOLDS

A. D. Mednykh; Andrei Vesnin

Closed hyperbolic 3-manifolds obtained by Dehn surgeries on the Whitehead link yield interesting examples of manifolds of small volume. In the present paper these manifolds are described as 2-fold coverings of the 3-sphere branched over 3-bridge links. As a corollary, maximally symmetric -manifolds of small volume are obtained.


Mathematical Notes | 2009

The volume of the Lambert cube in spherical space

D. A. Derevnin; A. D. Mednykh

AbstractThe Lambert cube Q(α, β, γ) is one of the simplest polyhedra. By definition, this is a combinatorial cube with dihedral angles α, β, and γ at three noncoplanar edges and with right angles at all other edges. The volume of the Lambert cube in hyperbolic space was obtained by R. Kellerhals (1989) in terms of the Lobachevskii function Λ(x). In the present paper, we find the volume of the Lambert cube in spherical space. It is expressed in terms of the function % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaGaeqiTdqgcbaGae8hkaGIaeqySdeMae8hlaWIa % eqiUdeNae8xkaKIae8xpa0Zaa8qmaeaacyGGSbaBcqGGVbWBcqGGNb % WzcqGGOaakcqaIXaqmcqGHsislcyGGJbWycqGGVbWBcqGGZbWCcqaI % YaGmcqaHXoqycyGGJbWycqGGVbWBcqGGZbWCcqaIYaGmrmqr1ngBPr % gitLxBI9gBaGGbaiab+r8a0jabcMcaPaWcbaGaeqiUdehabaaccaGa % e0hWdaNaei4la8IaeGOmaidaniabgUIiYdGcdaWcaaqaaiabdsgaKj % ab+r8a0bqaaiGbcogaJjabc+gaVjabcohaZjabikdaYiab+r8a0baa % cqGGSaalaaa!70FD!


Mathematical Notes | 1999

Spherical coxeter groups and hyperelliptic 3-manifolds

A. Yu. Vesnin; A. D. Mednykh


Uspekhi Matematicheskikh Nauk | 2005

О формуле объема гиперболического тетраэдра@@@A formula for the volume of a hyperbolic tetrahedon

Дмитрий Александрович Деревнин; Dmitrii Aleksandrovich Derevnin; Александр Дмитриевич Медных; A. D. Mednykh

\delta (\alpha ,\theta ) = \int_\theta ^{\pi /2} {\log (1 - \cos 2\alpha \cos 2\tau )} \frac{{d\tau }} {{\cos 2\tau }},


Journal of Knot Theory and Its Ramifications | 2014

Trigonometric identities and volumes of the hyperbolic twist knot cone-manifolds

Ji-Young Ham; A. D. Mednykh; Vladimir Petrov


Boletín de la Sociedad Matemática Mexicana: Tercera Serie | 2004

On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups

A. D. Mednykh; John R. Parker; Andrei Vesnin

which can be regarded as the spherical analog of the function % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaGaeuiLdqecbaGae8hkaGIaeqySdeMae8hlaWIa % eqiUdeNae8xkaKIae8xpa0Jaeu4MdWKaeiikaGIaeqySdeMaey4kaS % IaeqiUdeNaeiykaKIaeyOeI0Iaeu4MdWKaeiikaGIaeqySdeMaeyOe % I0IaeqiUdeNaeiykaKIaeiOla4caaa!54BB!


Siberian Mathematical Journal | 1999

Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions

A. Yu. Vesnin; A. D. Mednykh


Siberian Mathematical Journal | 1996

Fibonacci manifolds as two-fold coverings of the three-dimensional sphere and the Meyerhoff-Neumann conjecture

A. Yu. Vesnin; A. D. Mednykh

\Delta (\alpha ,\theta ) = \Lambda (\alpha + \theta ) - \Lambda (\alpha - \theta ).


Siberian Mathematical Journal | 1999

Three-dimensional hyperelliptic manifolds and hamiltonian graphs

A. Yu. Vesnin; A. D. Mednykh

Collaboration


Dive into the A. D. Mednykh's collaboration.

Top Co-Authors

Avatar

A. Yu. Vesnin

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Young Ham

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Alexander Mednykh

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge