Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. D. Panov is active.

Publication


Featured researches published by A. D. Panov.


Nature | 2008

An excess of cosmic ray electrons at energies of 300-800 GeV

J. Chang; J. Adams; H. S. Ahn; G. L. Bashindzhagyan; Mark J. Christl; O. Ganel; T. G. Guzik; J. Isbert; K. C. Kim; E. N. Kuznetsov; M.I. Panasyuk; A. D. Panov; W. K. H. Schmidt; E. S. Seo; N. V. Sokolskaya; J. W. Watts; John P. Wefel; J. Wu; V.I. Zatsepin

Galactic cosmic rays consist of protons, electrons and ions, most of which are believed to be accelerated to relativistic speeds in supernova remnants. All components of the cosmic rays show an intensity that decreases as a power law with increasing energy (for example as E-2.7). Electrons in particular lose energy rapidly through synchrotron and inverse Compton processes, resulting in a relatively short lifetime (about 105 years) and a rapidly falling intensity, which raises the possibility of seeing the contribution from individual nearby sources (less than one kiloparsec away). Here we report an excess of galactic cosmic-ray electrons at energies of ∼300–800 GeV, which indicates a nearby source of energetic electrons. Such a source could be an unseen astrophysical object (such as a pulsar or micro-quasar) that accelerates electrons to those energies, or the electrons could arise from the annihilation of dark matter particles (such as a Kaluza–Klein particle with a mass of about 620 GeV).


Bulletin of The Russian Academy of Sciences: Physics | 2009

Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results

A. D. Panov; J. Adams; H. S. Ahn; G. L. Bashinzhagyan; J. W. Watts; J. P. Wefel; J. Wu; O. Ganel; T. G. Guzik; V.I. Zatsepin; I. Isbert; K. C. Kim; Mark J. Christl; E. N. Kouznetsov; M. I. Panasyuk; E. S. Seo; N. V. Sokolskaya; J. Chang; W. K. H. Schmidt; A. R. Fazely

The final results of processing the data from the balloon-born experiment ATIC-2 (Antarctica, 2002–2003) for the energy spectra of protons and He, C, O, Ne, Mg, Si, and Fe nuclei, the spectrum of all particles, and the mean logarithm of atomic weight of primary cosmic rays as a function of energy are presented. The final results are based on improvement of the methods used earlier, in particular, considerably increased resolution of the charge spectrum. The preliminary conclusions on the significant difference in the spectra of protons and helium nuclei (the proton spectrum is steeper) and the non-power character of the spectra of protons and heavier nuclei (flattening of carbon spectrum at energies above 10 TeV) are confirmed. A complex structure of the energy dependence of the mean logarithm of atomic weight is found.


Bulletin of The Russian Academy of Sciences: Physics | 2007

Elemental energy spectra of cosmic rays from the data of the ATIC-2 experiment

A. D. Panov; J. H. AdamsJr.; H. S. Ahn; K. E. Batkov; G. L. Bashindzhagyan; J. W. Watts; J. P. Wefel; J. Wu; O. Ganel; T. G. Guzik; R. M. Gunashingha; V.I. Zatsepin; J. Isbert; K. C. Kim; Mark J. Christl; E. N. Kouznetsov; M.I. Panasyuk; E. S. Seo; N. V. Sokolskaya; J. Chang; W. K. H. Schmidt; A. R. Fazely

This paper reports on the results of measurements performed in the course of the ATIC-2 balloon experiment (2002–2003) for the energy spectra of particles (such as protons; He, C, O, Ne, Mg, Si, and Fe nuclei; and some groups of nuclei) and the all-particle energy spectrum in primary cosmic rays at energies ranging from 50 GeV to 200 TeV. The conclusion is drawn that the energy spectra of protons and helium nuclei differ substantially (the spectrum of protons is steeper) and that the shape of the energy spectra of protons and heavy nuclei cannot be described by a power function.


Astrophysics and Space Sciences Transactions | 2011

Possible structure in the cosmic ray electron spectrum measured by the ATIC-2 and ATIC-4 experiments

A. D. Panov; V.I. Zatsepin; N. V. Sokolskaya; J. Adams; H. S. Ahn; G. L. Bashindzhagyan; J. Chang; Mark J. Christl; T. G. Guzik; J. Isbert; K. C. Kim; E. N. Kouznetsov; M. I. Panasyuk; E. Postnikov; E. S. Seo; J. W. Watts; J. P. Wefel; J. Wu

A strong excess in a form of a wide peak in the energy range of 300-800 GeV was discovered in the first measurements of the electron spectrum in the energy range from 20 GeV to 3 TeV by the balloon-borne experiment ATIC (J. Chang et al. Nature, 2008). The experimental data processing and analysis of the electron spectrum with different criteria for selection of electrons, completely independent of the results reported in (J. Chang et al. Nature, 2008) is employed in the present paper. The new independent analysis generally confirms the results of (J. Chang et al. Nature, 2008), but shows that the spectrum in the region of the excess is represented by a number of narrow peaks. The measured spectrum is compared to the spectrum of (J. Chang et al. Nature, 2008) and to the spectrum of the Fermi/LAT experiment.


arXiv: High Energy Astrophysical Phenomena | 2013

Electrons and Positrons in Cosmic Rays

A. D. Panov

This review concentrates on the results obtained, over the last ten years, on the astrophysics of high-energy cosmic ray electrons and positrons. The anomalies, observed in the data of recent experiments (possible bump in the electron spectrum and the PAMELA anomaly in the positron fraction) are discussed through the systematic use of simple analytical solutions of the transport equations for cosmic ray electrons. Three main ways of explaining the origin of the anomalies are considered: the conservative way supposing the positrons to be pure secondary particles; the nearby sources like pulsars origin; and the dark matter origin. This review discusses, also, the inability to select the pulsars model or the dark matter model to explain the electron anomalies on the basis of the electron spectra with the usual large energy binning ( 15%). It is argued that the signature of nearby pulsars origin of the anomalies against the dark matter origin could be the fine structure of the cosmic ray electron spectrum predicted in the Malyshev et al. paper (2009) and which was observed in the data from the high-resolution ATIC experiment (2009-2011). To date, the high-resolution ATIC data was the only experimental result of this type published in the literature. Therefore, they should be tested by other experiments as soon as possible. Generally, there is, also, rather controversial situations between the data of the majority of recent experiments and, consequently, there is a noted urgent need for new high-precision and high-statistical experiments.


Physics Letters A | 1999

General equation for Zeno-like effects in spontaneous exponential decay

A. D. Panov

Abstract Different perturbation mechanisms of the spontaneous decay constant are shown: the inelastic interaction of emitted particles with particle detector, decay onto an unstable level, Rabi transition from the final state of decay (electromagnetic field domination) and some others are really the special kinds of one general effect – the perturbation of the decay constant by dissipation of the final state of decay. Such phenomena are considered to be Zeno-like effects and the general formula for the perturbed decay constant is deduced.


Astronomy Letters | 2009

Energy Dependence of Ti/Fe Ratio in the Galactic Cosmic Rays Measured by the ATIC-2 Experiment*

V.I. Zatsepin; A. D. Panov; N. V. Sokolskaya; J. Adams; H. S. Ahn; G. L. Bashindzhagyan; J. Chang; Mark J. Christl; A. R. Fazely; T. G. Guzik; J. Isbert; K. C. Kim; E. N. Kouznetsov; M. I. Panasyuk; E. S. Seo; J. W. Watts; J. P. Wefel; J. Wu

Titanium is a rare, secondary nucleus among Galactic cosmic rays. Using the Silicon matrix in the ATIC experiment, Titanium has been separated. The energy dependence of the Ti to Fe flux ratio in the energy region from 5 GeV per nucleon to about 500 GeV per nucleon is presented.


Physics Letters A | 2002

Inverse quantum Zeno effect in quantum oscillations

A. D. Panov

It is shown that inverse quantum Zeno effect (IZE) could exist in a three-level system with Rabi oscillations between discrete atomic states. An experiment to observe IZE in such a system is proposed.


Journal of Experimental and Theoretical Physics | 1997

Quantitative conversion spectroscopy of the ultrasoft isomeric transition of uranium-235 and the electronic structure of uranium oxides

A. D. Panov

Combined measurements of conversion electron spectra and the decay constant (76.5 eV, (1/2)+→(7/2)−) of the E3-isomeric transition of the uranium-235 nucleus have been performed with collection of the isomer atoms on an indium surface. The conversion spectra are interpreted as corresponding to a mixture of two different oxides A and B of uranium, one of which (A) is similar to UO2, and the other (B) consists of a uranium-oxygen cluster based on the linear uranyl group O-U-O. From a set of mixed experimental spectra conversion spectra have been found corresponding to the chemical states A and B of the isomer atoms, and the variation of the absolute intensities of the conversion lines has been quantitatively investigated for them by varying the chemical composition of the isomer atoms and the ratio between the intensities of various conversion lines of the B spectrum. Experimental ratios between the intensities of the conversion lines are compared with the expected ratios in accordance with the distribution of the 6p electron density in the uranyl group. It is concluded that the experimental data agree with the calculation and that abrupt violations of proportionality of the partial probabilities of conversion of the electron density near the nucleus are absent. In accordance with the hypothesis of proportionality of the partial probabilities of conversion, an experimental estimate is given of the degree of localization of the deep-lying uranium 6p1/2 shell during formation of the chemical bond in the uranyl group: around 70% of the 6p1/2 electron density remains in the quasi-atomic uranium shell and around 30% is transferred to hybrid molecular orbitals.


arXiv: High Energy Astrophysical Phenomena | 2013

Upturn observed in heavy nuclei to iron ratios by the ATIC-2 experiment

A. D. Panov; N. V. Sokolskaya; V.I. Zatsepin; J. Adams; H. S. Ahn; G. L. Bashindzhagyan; J. Chang; M Christl; A. R. Fazely; T. G. Guzik; J. Isbert; K. C. Kim; E. N. Kouznetsov; M. I. Panasyuk; E. S. Seo; J. W. Watts; J. P. Wefel; J. Wu

The ratios of fluxes of heavy nuclei from sulfur (Z=16) to chromium (Z=24) to the flux of iron were measured by the ATIC-2 experiment. The ratios are decreasing functions of energy from 5 GeV/n to approximately 80 GeV/n, as expected. However, an unexpected sharp upturn in the ratios are observed for energies above 100 GeV/n for all elements from Z=16 to Z=24. Similar upturn but with lower amplitude was also discovered in the ATIC-2 data for the ratio of fluxes of abundant even nuclei (C, O, Ne, Mg, Si) to the flux of iron. Therefore the spectrum of iron is significantly different from the spectra of other abundant even nuclei.

Collaboration


Dive into the A. D. Panov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Isbert

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

T. G. Guzik

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Mark J. Christl

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J. Adams

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. R. Fazely

Southern University and A

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge