A. D. Todd
The Hertz Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. D. Todd.
The Journal of Agricultural Science | 1983
R. D. Prew; B. M. Church; A. M. Dewar; J. Lacey; A. Penny; R. T. Plumb; Gillian N. Thorne; A. D. Todd; T. D. Williams
A multifactorial experiment sown to winter wheat cv. Hustler in autumn 1978 tested the effects of combinations of the following eight factors, each at two levels: drill type, sowing date, amount of nitrogen, division of nitrogen, irrigation, autumn pesticide (aldicarb), summer aphicide (pirimicarb), and fungicide (carbendazim, maneb and tridemorph). The mean grain yield of all plots was 9·7 t/ha and the best eight-plot treatment mean was 11·3 t/ha. The factors that had the greatest effect on yield were aphicide and fungicide, mainly from the control of Metopolophium dirhodum and Septoria spp. respectively. Both factors increased grain size and their effects were more than additive and greater with 250 than with 160 kg N/ha. Aphicide and fungicide also temporarily decreased the numbers of microbes on the developing ears. Autumn pesticide gave good control of aphids in the winter and some control in the summer: it also decreased nematode populations and slightly increased yields. Precision sowing compared with random distribution of seeds along the row had little effect on growth or yield. Sowing on 21 September compared with 13 October greatly increased growth early in the season but had less effect after anthesis; it was the only factor that increased yield when aphicide and fungicide were applied. There was negligible infection by barley yellow dwarf virus in crops sown on either date. The amount and division of N fertilizer affected N uptake early in the season and had small effects on the production and survival of tillers. Three N applications instead of one slightly increased grain yields but did not affect total N uptake by grains plus straw, which averaged 190 kg N/ha. The larger amount of N always increased N uptake but decreased yield in the absence of aphicide and fungicide. Irrigation slightly decreased yield despite prolonging the duration of green leaf area.
The Journal of Agricultural Science | 1986
R. D. Prew; J. Beane; N. Carter; B. M. Church; A. M. Dewar; J. Lacey; A. Penny; R. T. Plumb; Gillian N. Thorne; A. D. Todd
Winter wheat cv. Avalon was sown in autumn 1981, 1982 and 1983 on a clay loam soil following two cereal crops. Multifactorial experiments tested the effects of combinations of the following eight factors, each at two levels: rotation, sowing date, timing of nitrogen, amount of nitrogen, growth regulator, pesticide, spring fungicide and summer fungicide. The best 16-plot mean grain yields in 1982–4 were respectively 8·7, 10·2 and 11·1 t/ha. Rotation had the largest effect on grain yield. Wheat following barley was severely infected with take-all and yielded, on average over 3 years, 2·2 t/ha less than wheat following oats. Take-all was more severe on wheat sown in mid-September than in mid-October; its effects on yield were lessened by early timing of N in 1982. Take-all decreased growth and N uptake mainly after anthesis, and also number of ears and dry weight per grain. Sowing in mid-September compared with mid-October decreased yield of wheat after barley by an average of 0·8 t/ha because take-all was more severe. Early sowing had negligible effects on grain yield of wheat after oats, but increased straw dry weight by 1·1 t/ha. Spring fungioide increased yield by an average of 0·3 t/ha. Effects were larger after barley than after oats, associated with a greater incidence of eyespot after barley. Summer fungioide increased yield by an average of 0·3 t/ha. Foliar diseases were slight in all 3 years. Fusarium ear blight and sharp eyespot were prevalent in 1982 and were not well controlled by the fungioide treatments. Fungicide temporarily decreased the incidence of some components of the mioroflora on the ears. Pesticide increased grain yield of wheat after oats only in 1984, when aphids on the ears were numerous. Aphids were present on early-sown plots in all three autumns but there was little barley yellow dwarf virus infection even without pesticide. Pesticide always decreased the number of nematodes after harvest to fewer than present before sowing. Populations never approached levels expected to affect yield. Early N application (main application early March) resulted in a larger grain yield in 1982 than N applied a month later. In 1983 and 1984 grain yield and N uptake by the grain were greater with the late application, especially when wheat was sown early. The soil contained more mineral N in the autumn of 1982 and 1983 than in 1981. Straw weight was always greater with early than with late application. Increasing the amount of N applied from 163 to 223 kg/ha increased N uptake by 40 kg/ha and grain yield by 0·5 t/ha after oats and by 0·6 t/ha after barley. N uptake in grain plus straw by the best yielding crops ranged from 205 kg/ha in 1982 to 246 kg/ha in 1984. Chlormequat applied at the start of stem extension shortened the stems at maturity by 2 cm each year. In 1984 it inoreased yield of early-sown wheat by 0·3 t/ha and also decreased lodging, which did not occur in the first 2 years.
The Journal of Agricultural Science | 1995
R. D. Prew; J. E. Ashby; E. T. G. Bacon; D.G. Christian; R. J. Gutteridge; J. F. Jenkyn; W. Powell; A. D. Todd
Disposal methods for straw from continuous winter wheat were tested on two soil types, a flinty silty clay loam and a sandy loam, over 7 years (1985–91). The methods tested were burnt or chopped straw in full factorial combination with four cultivation methods (tined to 10 cm, tined to 10 cm then to 20 cm; ploughed to 20 cm; tined to 10 cm then ploughed to 20 cm). Measurements were taken to determine the effects on crop establishment and growth, pest and disease incidence, and the consequent effects on yield. Another experiment (1985–91) on the flinty silty clay loam site, investigated the interactions between straw treatments (burnt, baled or chopped in plots that were all shallow cultivated to 10 cm) and five other factors; namely, time of cultivation, insecticides, molluscicides, fungicides and autumn nitrogen. All the straw x cultivation systems allowed satisfactory crops to be established but repeated incorporation of straw using shallow, non-inversion cultivations resulted in very severe grass-weed problems. Early crop growth, as measured by above-ground dry matter production, was frequently decreased by straw residues, but the effect rarely persisted beyond anthesis. Pests were not a problem and their numbers were not greatly affected either by straw or cultivation treatments, apart from yellow cereal fly which, especially on the heavier soil, was decreased by treatments which left much straw debris on the soil surface. Incorporating straw also caused no serious increases in the incidence of diseases. Indeed, averaged over all sites and years, eyespot and sharp eyespot were both slightly but significantly less severe where straw was incorporated than where it was burnt. Eyespot, and even more consistently sharp eyespot, were often more severe after ploughing than after shallow, non-inversion cultivations. Effects on take-all were complex but straw residues had much smaller effects than cultivations. Initially the disease increased most rapidly in the shallow cultivated plots but these also tended to go into the decline phase more quickly so that in the fourth year (fifth cereal crop) take-all was greater in the ploughed than in the shallow cultivated plots. On average, yields did not differ greatly with straw or cultivation systems, although there were clear effects of take-all in those years when the disease was most severe. In the last 2 years, yields were limited by the presence of grass weeds in the plots testing chopped straw incorporated by tining to 10 cm.
The Journal of Agricultural Science | 2001
J. F. Jenkyn; D.G. Christian; E. T. G. Bacon; R. J. Gutteridge; A. D. Todd
Three experiments on winter wheat, each lasting 5 years and on different soil types, were used to test the effects of incorporating different amounts of straw, mainly to determine the importance of achieving uniform distribution to avoid adverse effects on grain yield. Decreases in crop growth and/or grain yield as a consequence of incorporating straw were detected in the first year. The decreases were much larger in one experiment where straw was imported and applied to soil that had been fallowed for 12 months before sowing the wheat than in the other two where the straw was incorporated following the harvest of a winter wheat crop. In the subsequent 4 years, incorporating up to 20 t straw/ha had no significant effects on grain yield but there were some significant effects on concentrations and uptakes of N, P and K, especially on the heavier textured soils. The effects on crop growth and yield that were detected in the first year on each site are tentatively attributed to decreases in available N representing that which was required to support the decomposition of the incorporated straw. The relative lack of significant effects in subsequent years seems to imply that a significant proportion of this N was remineralized relatively quickly, and thus available to support the decomposition of the straw that was incorporated in the second year and, after further recycling, in the years after that. Eycspot, caused by the fungus Pseudocercosporella herpotrichoides, was decreased by incorporating straw but there were few significant effects on other diseases. The results provide a generally reassuring message for farmers in suggesting that on most, if not all, soils there is little cause for concern about the consequences of incorporating even large amounts of wheat straw before sowing a further crop of winter wheat.
The Journal of Agricultural Science | 1993
G. F. J. Milford; A. Penny; R. D. Prew; R. J. Darby; A. D. Todd
Multifactorial experiments at Rothamsted Experimental Station in two contrasting seasons, 1985/86 and 1986/87, tested the effects of treatment combinations that varied the supply of nitrogen at important stages of crop development in autumn and spring on the grain yield and nitrogen content of September- and October-sown winter wheat. Treatments that altered the nitrogen supply in autumn were an application of winter fertilizer N and sowing the wheat after rape or oats, which left different amounts of residual N. These were combined with treatments which tested the effects of 200 kg N/ha in spring applied as early or late dressings and as single or divided dressings. The effect of applying an additional 50 kg N/ha in summer was also tested in 1985/86. In both experiments, larger yields were obtained from sowing in September than in October. The September-sown wheat grew better over winter in 1986/87 than in 1985/86 but the early advantage in size and N uptake resulted in enhanced production of straw rather than grain. Residues of N from previous crops were smaller after oats than rape in both years. This difference in soil N did not affect the over-winter growth and N uptake of the October-sown wheats. Neither this difference in residual N nor an application of fertilizer N in winter affected the yield of the following September-sown wheat in 1985/86 because autumn growth and N uptake were restricted by adverse weather. In 1986/87, however, wheat that followed oats yielded 0·42 t/ha less grain than wheat that followed rape, and the deficit in yield was removed by an application of fertilizer N equivalent to the deficit in soil N. Yields were decreased when the spring N was applied as a delayed, single dressing in April especially if the wheat was sown in September after oats, or was not given winter N. Yields were not affected by any of the other combinations of single v . divided dressings or early v . late applications of spring N, despite these being given at very different stages of apical development. The percentage of N in the harvested grain was greatly increased by winter applications of fertilizer N, especially to wheat grown after oats, by applying the spring N as a late, single dressing and, in 1986, by applying N in summer.
The Journal of Agricultural Science | 1995
J. F. Jenkyn; R. J. Gutteridge; A. D. Todd
An experiment at Rothamsted in 1985-89 and another at Whaddon in 1986 studied the effects of incorporating straw on diseases of winter barley. Net blotch (Pyrenophora teres) and leaf blotch (Rhynchosporium secalis) were initially less severe where straw was burnt or incorporated by ploughing than where cultivations only partially buried it. However, by summer both diseases were usually more severe where straw had been burnt than where it had been incorporated. At Whaddon, eyespot (Pseudocercosporella herpotrichoides) tended to be less severe in tine-cultivated plots where straw was incorporated than where it was burnt, but at Rothamsted, where the straw treatments were confounded with cultivations, there was no consistent effect. The disease was usually more severe where straw was incorporated by ploughing than where it was incorporated using other methods. In contrast, the severity of take-all was generally decreased by ploughing. Seedlings usually grew better where straw had been burnt rather than incorporated and grain yields were often larger. However, yields at Rothamsted in 1987 were unusually, and inexplicably, smaller after burning the straw so that the 5-year mean yields showed no significant differences between treatments
The Journal of Agricultural Science | 2000
I. Shield; T. Scott; H. J. Stevenson; J. E. Leach; A. D. Todd
A series of experiments were carried out at 14 sites in the major arable areas of the UK, in the years 1993–94, 1994–95 and 1995–96 to determine the causes and extent of over-winter plant losses of two autumn-sown cultivars of white lupin ( Lupinus albus L.). Over the three seasons frost was the major cause of plant losses. Two mechanisms (one known and one not previously reported in the UK) of frost tolerance under field conditions were identified: (i) lignification of the root parenchyma early in the life of the seedling, and (ii) a large vernalization requirement of the main-stem apex, which delays stem elongation in older plants. A model was developed that could be used to predict the susceptibility of these lupin cultivars to the first severe frost of the winter using accumulated thermal time (above a base temperature of 3 °C). The effect of sowing at the beginning or end of a sowing window, calculated to optimize plant architecture the following summer, therefore varied with the weather during the autumn/winter period. A combination of cool autumn weather and late sowing (outside of the sowing window) resulted in plant losses due to a lack of lignification of the root parenchyma. In unusually warm autumn conditions (1994–95 and 1995–96) plants sown at the beginning of the sowing window were well developed before the first frosts occurred, with consequent stem elongation and plant losses. Although losses due to pests were not severe ( c . 3 to 5 plants/m 2 ), plants were attacked during the autumn by grey field slugs ( Deroceras reticulatum Muller), bean seed flies ( Delia platura Meigen), and probably thrips ( Thrips angusticeps Uzel, Noctuidae), although this has not been confirmed. The fungal pathogens Fusarium spp. and Botrytis cinerea Pers. caused losses in conjunction with frost damage.
The Journal of Agricultural Science | 1992
J. F. Jenkyn; N. Carter; R. J. Darby; R. J. Gutteridge; L. A. Mullen; R. T. Plumb; G. J. S. Ross; A. D. Todd; F. V. Widdowson; D. W. Wood
In experiments at Rothamsted in 1984–86, seven factors, each at two levels, were tested in factorial combination on winter barley (cv. Panda) grown as a third take-all susceptible crop. The factors were seed rate, a growth regulator prior to stem extension, amounts of N in spring, ‘winter’ nitrogen, an autumn insecticide, a fungicide applied to the seed (‘Baytan’) and a programme of fungicide sprays in spring and summer. Sowing 50% more seeds than normal increased the number of ears/unit area but had no effect on mean grain yield because grains were smaller. There were, however, significant, but unexplained, interactions between seed rate and the fungicide ‘Baytan’ applied to the seed. A growth regulator applied prior to stem extension had little effect on crop growth and no significant effect on grain yield. If sufficient N was applied in April there was little benefit from applying ‘winter’ N (30 kg/ha in November and again in February/March) except in 1985 when the amount of NO 3 -N in the soil, measured in the previous October, was lowest. Insecticide sprays applied in autumn to control the aphid vectors of barley yellow dwarf virus (BYDV) had no significant effect on grain yield but infectivity indices were below the threshold needed for treatment in each year. On average, ‘Baytan’ applied to the seed increased grain yield by 0·28 t/ha and this was associated with decreases in the severity of take-all. Over the three years, programmes of fungicide sprays, applied during spring and summer, increased grain yield by 0·92 t/ha but the mean response was largest where most N was applied. The experiments also allowed the importance of interactions between different agronomic factors to be examined. A combined analysis of grain yields for all three years (based on 192 plot values) showed that only six 2- or 3-factor interactions, out of the 73 estimated, were significant ( P Additional plots of barley grown after oats had little take-all and yielded 1·14 t/ha more grain than similarly treated plots grown after barley. These responses were obtained despite evidence that oat residues had adverse effects on the growth of barley seedlings. Additional plots of barley grown after a bare fallow also had little take-all and gave even larger total yields (grain plus straw) than did barley after oats but the mean yield of grain was less than after oats because more of the dry matter after a fallow was straw. In 1984, when take-all was relatively slight, plots after a fallow gave even less grain than plots after barley (−0·77 t/ha) despite producing 2·12 t/ha more dry matter in grain plus straw.
The Journal of Agricultural Science | 1989
J. F. Jenkyn; O. J. Stedman; G. V. Dyke; A. D. Todd
(…) Inoculating plots with rhynchosporium-infected straw increased the rate of disease development and greatly decreased seedling growth but inoculating plots with wheat straw or sterilized barley straw had no effect. In 1982, plots inoculated with infected straw gave less grain than uninoculated plots, but in all years fungicide sprays applied in winter or early spring had mostly small effects on grain yield that were only poorly related to their effects on leaf blotch and seedling growth
The Journal of Agricultural Science | 1998
J. F. Jenkyn; R. J. Gutteridge; A. D. Todd
Different management regimes for 1-year rotational set-aside were tested in three experiments that followed winter wheat and started in autumn 1988-90. The regimes included operations that prevented the establishment of volunteers or allowed them to establish and persist until either spring or summer, and also altered the distribution of debris from the winter wheat that preceded the set-aside. For comparison, treatments in the set-aside year also included winter wheat. Samples taken in spring from the first test crop showed that there were few significant or consistent effects on leaf diseases of growing the wheat after different set--aside treatments or after winter wheat. There were significant effects of the set-aside treatments on root and stem base diseases but some of the effects, and the apparent absence of others, are not easily reconciled with current understanding of the biology of the pathogens concerned. In summer, eyespot (Pseudocercosporella herpotrichoides) was most severe after winter wheat and least severe after ryegrass. Severity after the other set-aside treatments did not differ significantly. There was more sharp eyespot (Rhizoctonia cerealis) in plots that had been ploughed at the start of the set-aside year, including those sown with winter wheat, than in those that had not. Brown foot rot (Fusarium spp.) was equally severe where the wheat followed wheat or where it followed set-aside treatments that allowed volunteers to develop, and less so where the development of volunteers was prevented. Take-all (Gaeumannomyces graminis var. tritici) was most severe after winter wheat and more severe after set-aside treatments that allowed volunteers to develop and survive through the winter than after those that did not. Effects of ryegrass (Lolium perenne ssp. multiflorum) on take-all in the following wheat were particularly variable, perhaps because ryegrass is a host of both the take-all fungus and of Phialophora graminicola, one of its principal antagonists.