Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Danilov is active.

Publication


Featured researches published by A. Danilov.


Biomaterials | 2003

Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute

Sauli Kujala; J. Ryhänen; A. Danilov; Juha Tuukkanen

Porous nickel-titanium (NiTi) alloy is a promising new material for a bone graft substitute with good strength properties and an elastic modulus closer to that of bone than any other metallic material. The purpose of this study was to evaluate the effect of porosity on the osteointegration of NiTi implants in rat bone. The porosities (average void volume) and the mean pore size (MPS) were 66.1% and 259+/-30 microm (group 1, n=14), 59.2% and 272+/-17 microm (group 2, n=4) and 46.6% and 505+/-136 microm (group 3, n=15), respectively. The implants were implanted in the distal femoral metaphysis of the rats for 30 weeks. The proportional bone-implant contact was best in group 1 (51%) without a significant difference compared to group 3 (39%). Group 2 had lower contact values (29%) than group 1 (p=0.038). Fibrotic tissue within the porous implant was found more often in group 1 than in group 3 (p=0.021), in which 12 samples out of 15 showed no signs of fibrosis. In conclusion, porosity of 66.1% (MPS 259+/-30 microm) showed best bone contact (51%) of the porosities tested here. However, the porosity of 46.6% (MPS 505+/-136 microm) with bone contact of 39% was not significantly inferior in this respect and showed lower incidence of fibrosis within the porous implant.


Biomaterials | 2001

Effect of nickel–titanium shape memory metal alloy on bone formation☆

Anita Kapanen; Jorma Ryhänen; A. Danilov; Juha Tuukkanen

The aim of this study was to determine the biocompatibility of NiTi alloy on bone formation in vivo. For this purpose we used ectopic bone formation assay which goes through all the events of bone formation and calcification. Comparisons were made between Nitinol (NiTi), stainless steel (Stst) and titanium-aluminium (6%)-vanadium (4%) alloy (Ti-6Al-4V), which were implanted for 8 weeks under the fascia of the latissimus dorsi muscle in 3-month-old rats. A light-microscopic examination showed no chronic inflammatory or other pathological findings in the induced ossicle or its capsule. New bone replaced part of the decalcified matrix with mineralized new cartilage and bone. The mineral density was measured with peripheral quantitative computed tomography (pQCT). The total bone mineral density (BMD) values were nearly equal between the control and the NiTi samples, the Stst samples and the Ti-6Al-4V samples had lower BMDs. Digital image analysis was used to measure the combined area of new fibrotic tissue and original implanted bone matrix powder around the implants. There were no significant differences between the implanted materials, although Ti-6Al-4V showed the largest matrix powder areas. The same method was used for measurements of proportional cartilage and new bone areas in the ossicles. NiTi showed the largest cartilage area (p < or = 0.05). Between implant groups the new bone area was largest in NiTi. We conclude that NiTi has good biocompatibility, as its effects on ectopic bone formation are similar to those of Stst, and that the ectopic bone formation assay developed here can be used for biocompatibility studies.


Biomaterials | 2002

Behaviour of Nitinol in osteoblast-like ROS-17 cell cultures

Anita Kapanen; Joanna Ilvesaro; A. Danilov; Jorma Ryhänen; Petri Lehenkari; Juha Tuukkanen

Nickel titanium shape memory metal alloy Nitinol (NiTi) has been used in dental wares and in gastrointestinal surgery. Nitinol is a promising implant material in orthopedics, but its biocompatibility, especially in long-term implantation is not confirmed yet. We studied Nitinols effect on a cell culture model. Comparisons to stainless steel, pure titanium and pure nickel were performed. The effects of Nitinol on cell death rate, the apoptosis rate and the formation of local contacts were studied on rat osteosarcoma cell line ROS-17 in 48-h cultures. The cell death rate was assessed with combined calcein-ethidium-homodimer labelling. The amount of dead cells 1000 cells were as follows: four in the NiTi, 21 in the Stst, 4.8 in the Ti and 51 in the Ni group. In the NiTi and Ti groups, the number of dead cells was significantly lower (p < or = 0.01) than in Ni group. The rate of apoptosis was detected with TUNEL-assay. The assay results were: 1.93 apoptotic cells 1000 cells in the NiTi, 1.1 in the Stst, 2.98 in the Ti and 0.62 in the Ni group. A comparison of these two results shows that 48% of the dead cells were apoptotic in the NiTi, 56.6 in the Stst, 62% in the Ti and only 1.8% in the Ni group. The focal contacts were stained with a paxillin antibody and counted. There were marked differences in the number of focal contacts per unit area compared to NiTi (774 focal contacts): 335 in Stst (p < or = 0.01), 462 in Ti (p < or = 0.01) and 261 in Ni (p < or = 0.005). Our results show that NiTi is well tolerated by the osteoblastic type ROS-17 cells.


Biomaterials | 2002

Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail

Sauli Kujala; J. Ryhänen; Timo Jämsä; A. Danilov; Juha Saaranen; Antti Pramila; Juha Tuukkanen

Nitinol (NiTi) shape memory metal alloy makes it possible to prepare functional implants that apply a continuous bending force to the bone. The purpose of this study was to find out if bone modeling can be controlled with a functional intramedullary NiTi nail. Pre-shaped intramedullary NiTi nails (length 26 mm, thickness 1.0-1.4 mm) with a curvature radius of 25-37 mm were implanted in the cooled martensite form in the medullary cavity of the right femur in eight rats, where they restored their austenite form, causing a bending force. After 12 weeks, the operated femurs were compared with their non-operated contralateral counterpairs. Anteroposterior radiographs demonstrated significant bowing, as indicated by the angle between the distal articular surface and the long axis of the femur (p = 0.003). Significant retardation of longitudinal growth and thickening of operated femurs were also seen. Quantitative densitometry showed a significant increase in the average cross-sectional cortical area (p = 0.001) and cortical thickness (p = 0.002), which were most obvious in the mid-diaphyseal area. Cortical bone mineral density increased in the proximal part of the bone and decreased in the distal part. Polarized light microscopy of the histological samples revealed that the new bone induced by the functional intramedullary nail was mainly woven bone. In conclusion, this study showed that bone modeling can be controlled with a functional intramedullary nail made of nickel-titanium shape memory alloy.


Biomaterials | 2002

Effect of metal alloy surface stresses on the viability of ROS-17/2.8 osteoblastic cells

Anita Kapanen; A. Danilov; Petri Lehenkari; Jorma Ryhänen; Timo Jämsä; Juha Tuukkanen

In this study we compared the effect of structural stresses and surface roughness on biocompatibility of NiTi- and Ti-alloy for ROS-17/2.8 osteoblastic cells. We suggest here that cell viability and cell attachment are linear functions of internal (structural) stress and subgrain size of the implant alloy. However, this is not the case with surface roughness. The two-phase state in these materials is characterized by different mean values of structural stresses (sigma) in alpha-martensite and beta-phase. We found a straight correlation between cell viability and sigma(beta)/sigma(alpha) ratio. Atomic force microscopy revealed that, even after equal surface polishing treatments, roughness varied significantly between the different alloys. The effect of the surface structure of the alloy on the osteoblastic ROS-17/2.8 cell survival rate was studied with combined calcein-ethidium-homodimer fluorescence labeling. The possible effects on cell attachment to substrate were studied by staining the focal contacts with paxillin antibody. All the NiTi surfaces were tolerated well and the cells attached most abundantly to the roughest NiTi surface but the smoothest Ti-alloy surface. However, other parameters of the material state, such as the surface stresses created by hot rolling seem to be responsible for some of the attachment and cell survival features observed in this study.


Journal of Materials Science: Materials in Medicine | 2002

Comparison of the bone modeling effects caused by curved and straight nickel-titanium intramedullary nails.

Sauli Kujala; Juha Tuukkanen; Timo Jämsä; A. Danilov; Antti Pramila; J. Ryhänen

Nitinol (NiTi) shape memory metal alloy makes it possible to prepare functional implants. A curved intramedullary NiTi nail has been shown to cause bending of the bone, bone thickening, increase in cortical area, and reduction in bone longitudinal growth. The purpose of the present study was to find out whether these changes are caused by the bending force of the curved nail or by the intramedullary nailing itself. Pre-shaped intramedullary NiTi nails were implanted in the cooled martensitic form into the medullary cavity of the right femur in 12 rats, where they started to restore their austenitic form, causing a bending force. Straight nails were used as controls in another 12 rats. After 12 weeks, the operated femurs were compared with their non-operated contralateral counterparts and the differences were compared between the groups. Anteroposterior radiographs demonstrated bone bowing only in the curved nail group. Retardation of longitudinal growth was observed in both groups, showing that the growth effect seems to be due to the intramedullary nailing itself. Increase in bone cross-sectional area and cortical thickness were found in both groups. However, this increase was more evident with the curved nail, indicating that the bending force of the functional nail seems to induce these changes.


Journal of Biomedical Materials Research Part A | 2009

Fibronectin modulates osteoblast behavior on Nitinol

V. Muhonen; C. Fauveaux; G. Olivera; P. Vigneron; A. Danilov; M.-D. Nagel; Juha Tuukkanen

We have previously demonstrated that primary rat osteoclasts behave differently when cultured on austenite and martensite Nitinol. In this study, we coated the two phases of Nitinol with plasma fibronectin and studied if this modifies the proliferation and cell cycle of MC3T3-E1 osteoblasts. The influence of the crystalline structure of Nitinol on the remodeling and conformation of fibronectin was also studied. The results on austenite demonstrated that fibronectin was more strongly remodeled and the cells spread better compared with the martensite phase. Interestingly, the conformation of the protein showed no differences between austenite and martensite. In addition, fibronectin improved cell proliferation in both phases, but the effect of fibronectin coating was stronger on the austenite surface. In addition, in both Nitinol phases, the proportion of cells in the G(1) phase was observed to grow in the presence of fibronectin. This could indicate cell differentiation on Nitinol.


Journal of Materials Science: Materials in Medicine | 2007

The effect of oxide thickness on osteoblast attachment and survival on NiTi alloy

V. Muhonen; R. Heikkinen; A. Danilov; Timo Jämsä; Juha Tuukkanen


Journal of Biomedical Materials Research Part A | 2007

Biocompatilibity‐related surface characteristics of oxidized NiTi

A. Danilov; Tuomas Tuukkanen; Juha Tuukkanen; Timo Jämsä


Journal of Biomedical Materials Research Part A | 2005

The phase state of NiTi implant material affects osteoclastic attachment

V. Muhonen; R. Heikkinen; A. Danilov; Timo Jämsä; J. Ilvesaro; Juha Tuukkanen

Collaboration


Dive into the A. Danilov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Ryhänen

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar

Sauli Kujala

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge