Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Dax is active.

Publication


Featured researches published by A. Dax.


Science | 2013

Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen

Aldo Antognini; F. Nez; Karsten Schuhmann; F. D. Amaro; F. Biraben; João Cardoso; D.S. Covita; A. Dax; Satish Dhawan; Marc Diepold; L.M.P. Fernandes; Adolf Giesen; Andrea L. Gouvea; Thomas Graf; T. W. Hänsch; P. Indelicato; L. Julien; Cheng-Yang Kao; P. Knowles; F. Kottmann; Eric-Olivier Le Bigot; Yi-Wei Liu; José A. M. Lopes; L. Ludhova; Cristina M. B. Monteiro; F. Mulhauser; Tobias Nebel; Paul Rabinowitz; Joaquim M. F. Dos Santos; L.A. Schaller

Proton Still Too Small Despite a protons tiny size, it is possible to measure its radius based on its charge or magnetization distributions. Traditional measurements of proton radius were based on the scattering between protons and electrons. Recently, a precision measurement of a line in the spectrum of muonium—an atom consisting of a proton and a muon, instead of an electron—revealed a radius inconsistent with that deduced from scattering studies. Antognini et al. (p. 417; see the Perspective by Margolis) examined a different spectral line of muonium, with results less dependent on theoretical analyses, yet still inconsistent with the scattering result; in fact, the discrepancy increased. A precision spectroscopic measurement of the proton radius indicates a growing discrepancy with respect to scattering results. [Also see Perspective by Margolis] Accurate knowledge of the charge and Zemach radii of the proton is essential, not only for understanding its structure but also as input for tests of bound-state quantum electrodynamics and its predictions for the energy levels of hydrogen. These radii may be extracted from the laser spectroscopy of muonic hydrogen (μp, that is, a proton orbited by a muon). We measured the 2S1/2F=0-2P3/2F=1 transition frequency in μp to be 54611.16(1.05) gigahertz (numbers in parentheses indicate one standard deviation of uncertainty) and reevaluated the 2S1/2F=1-2P3/2F=2 transition frequency, yielding 49881.35(65) gigahertz. From the measurements, we determined the Zemach radius, rZ = 1.082(37) femtometers, and the magnetic radius, rM = 0.87(6) femtometer, of the proton. We also extracted the charge radius, rE = 0.84087(39) femtometer, with an order of magnitude more precision than the 2010-CODATA value and at 7σ variance with respect to it, thus reinforcing the proton radius puzzle.


Physical Review Letters | 2006

Nuclear Charge Radii of 9,11Li: The Influence of Halo Neutrons

R. Sánchez; W. Nörtershäuser; G. Ewald; D. Albers; J. A. Behr; P. Bricault; Bruce A. Bushaw; A. Dax; J. Dilling; M. Dombsky; Gordon W. F. Drake; S. Götte; R. Kirchner; H.-J. Kluge; Th. Kühl; J. Lassen; C. D. P. Levy; M. R. Pearson; E. J. Prime; V. L. Ryjkov; A. Wojtaszek; Zong-Chao Yan; C. Zimmermann

The nuclear charge radius of 11Li has been determined for the first time by high-precision laser spectroscopy. On-line measurements at TRIUMF-ISAC yielded a 7Li-11Li isotope shift (IS) of 25 101.23(13) MHz for the Doppler-free [FORMULA: SEE TEXT]transition. IS accuracy for all other bound Li isotopes was also improved. Differences from calculated mass-based IS yield values for change in charge radius along the isotope chain. The charge radius decreases monotonically from 6Li to 9Li, and then increases from 2.217(35) to 2.467(37) fm for 11Li. This is compared to various models, and it is found that a combination of halo neutron correlation and intrinsic core excitation best reproduces the experimental results.


Nature | 2011

Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio

Masaki Hori; Anna Sótér; D. Barna; A. Dax; R. Hayano; S. Friedreich; B. Juhász; T. Pask; E. Widmann; Dezső Horváth; L. Venturelli; N. Zurlo

Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium (He+) is a three-body atom consisting of a normal helium nucleus, an electron in its ground state and an antiproton () occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n ≈ l + 1 ≈ 38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which 3He+ and 4He+ isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-photon transitions of the antiproton of the type (n, l) → (n − 2, l − 2) at deep-ultraviolet wavelengths (λ = 139.8, 193.0 and 197.0 nm), which partly cancel the Doppler broadening of the laser resonance caused by the thermal motion of the atoms. The resulting narrow spectral lines allowed us to measure three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing the results with three-body quantum electrodynamics calculations, we derived an antiproton-to-electron mass ratio of 1,836.1526736(23), where the parenthetical error represents one standard deviation. This agrees with the proton-to-electron value known to a similar precision.


IEEE Journal of Quantum Electronics | 2009

Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime

Aldo Antognini; Karsten Schuhmann; F. D. Amaro; F. Biraben; A. Dax; Adolf Giesen; Thomas Graf; T. W. Hänsch; P. Indelicato; L. Julien; Cheng-Yang Kao; Paul E. Knowles; F. Kottmann; E.-O. Le Bigot; Yi-Wei Liu; L. Ludhova; N. Moschuring; F. Mulhauser; Tobias Nebel; F. Nez; Paul Rabinowitz; Catherine Schwob; D. Taqqu; Randolf Pohl

We report on a thin-disk Yb:YAG laser made from a Q-switched oscillator and a multipass amplifier delivering pulses of 48 mJ at 1030 nm. The peculiar requirements for this laser are the short delay time (< 500 ns) between electronic trigger and optical output pulse and the time randomness with which these triggers occur (with trigger to next trigger delay ges 1.5 ms). Details concerning the oscillator dynamics (-switching cycle, intensity stabilization), and the peculiar amplifier layout are given. Simulations of the beam propagation in the amplifier based on the Collins integral and the measured aspherical components of the disk reproduce well the measured beam intensity profiles (with higher order intensity moments) and gains. Measurements of the thermal lens and ASE effects of the disk are also presented. A novel method to deduce the effective Yb:YAG upper state lifetime (under real laser operation and including ASE effects) is presented. That knowledge is necessary to determine gain and stored energy in the active medium and to understand the limiting factors for energy scaling of thin-disk lasers.


Science | 2016

Laser spectroscopy of muonic deuterium

Randolf Pohl; F. Nez; L.M.P. Fernandes; F. D. Amaro; F. Biraben; João Cardoso; D. S. Covita; A. Dax; Satish Dhawan; Marc Diepold; Adolf Giesen; Andrea L. Gouvea; Thomas Graf; T. W. Hänsch; P. Indelicato; L. Julien; Paul E. Knowles; F. Kottmann; Eric-Olivier Le Bigot; Yi-Wei Liu; José A. M. Lopes; L. Ludhova; Cristina M. B. Monteiro; F. Mulhauser; Tobias Nebel; Paul Rabinowitz; Joaquim M. F. Dos Santos; L.A. Schaller; Karsten Schuhmann; Catherine Schwob

The deuteron is too small, too The radius of the proton has remained a point of debate ever since the spectroscopy of muonic hydrogen indicated a large discrepancy from the previously accepted value. Pohl et al. add an important clue for solving this so-called proton radius puzzle. They determined the charge radius of the deuteron, a nucleus consisting of a proton and a neutron, from the transition frequencies in muonic deuterium. Mirroring the proton radius puzzle, the radius of the deuteron was several standard deviations smaller than the value inferred from previous spectroscopic measurements of electronic deuterium. This independent discrepancy points to experimental or theoretical error or even to physics beyond the standard model. Science, this issue p. 669 The charge radius of the deuteron is several standard deviations smaller than the previously accepted value. The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ–. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.


Optics Letters | 2009

Chirp-corrected, nanosecond Ti:sapphire laser with 6 MHz linewidth for spectroscopy of antiprotonic helium

Masaki Hori; A. Dax

A nanosecond titanium sapphire laser with spectral linewidth Gamma(pl)~6 MHz and pulse energy of 50-100 mJ was demonstrated by using an intracavity electro-optic modulator to correct the frequency chirp in the output beam. The laser was referenced against a femtosecond frequency comb and used to measure the 6s-8s (F=4) two-photon transition frequency of Cs with a precision of 1.4 parts in 10(9).


Physics Letters B | 2009

Antiproton magnetic moment determined from the HFS of pHe

T. Pask; D. Barna; A. Dax; R. Hayano; Masaki Hori; D. Horvath; S. Friedreich; B. Juhász; O. Massiczek; N. Ono; Anna Sótér; E. Widmann

Abstract We report a determination of the antiproton magnetic moment, measured in a three-body system, independent of previous experiments. We present results from a systematic study of the hyperfine (HF) structure of antiprotonic helium where we have achieved a precision more than a factor of 10 better than our first measurement. A comparison between the experimental results and three-body quantum electrodynamic (QED) calculations leads to a new value for the antiproton magnetic moment μ s p ¯ = − 2.7862 ( 83 ) μ N , which agrees with the magnetic moment of the proton within 2.9 × 10 − 3 .


Science | 2016

Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio

Masaki Hori; Hossein Aghai-Khozani; Anna Sótér; D. Barna; A. Dax; R. Hayano; Takumi Kobayashi; Y. Murakami; Koichi Todoroki; Hiroyuki Yamada; Dezső Horváth; L. Venturelli

Exotic molecule tests fundamental symmetry Spectroscopy of exotic molecules can offer insight into fundamental physics. Hori et al. studied the transition frequencies of an unusual helium atom in which one of the two electrons was substituted by an antiproton, the negatively charged antiparticle partner of the proton (see the Perspective by Ubachs). The antiprotonic helium was cooled down to low temperatures to allow the frequencies to be measured with high precision. The extracted mass of the antiproton (relative to the electron mass) was in good agreement with previous measurements of the proton mass. This finding is in keeping with the implications of the combined charge, parity, and time-reversal symmetry of physical laws. Science, this issue p. 610; see also p. 546 Spectroscopy of a cold exotic molecule yields a precise value of the antiproton mass relative to the mass of the electron. Charge, parity, and time reversal (CPT) symmetry implies that a particle and its antiparticle have the same mass. The antiproton-to-electron mass ratio Mp¯/me can be precisely determined from the single-photon transition frequencies of antiprotonic helium. We measured 13 such frequencies with laser spectroscopy to a fractional precision of 2.5 × 10−9 to 16 × 10−9. About 2 × 109 antiprotonic helium atoms were cooled to temperatures between 1.5 and 1.7 kelvin by using buffer-gas cooling in cryogenic low-pressure helium gas; the narrow thermal distribution led to the observation of sharp spectral lines of small thermal Doppler width. The deviation between the experimental frequencies and the results of three-body quantum electrodynamics calculations was reduced by a factor of 1.4 to 10 compared with previous single-photon experiments. From this, Mp¯/me was determined as 1836.1526734(15), which agrees with a recent proton-to-electron experimental value within 8 × 10−10.


Physical Review A | 2011

Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination

W. Nörtershäuser; R. Sánchez; G. Ewald; A. Dax; J. Behr; P. Bricault; Bruce A. Bushaw; J. Dilling; M. Dombsky; Gordon W. F. Drake; S. Götte; H.-J. Kluge; Th. Kühl; J. Lassen; C. D. P. Levy; Krzysztof Pachucki; M. Pearson; Mariusz Puchalski; A. Wojtaszek; Zong-Chao Yan; C. Zimmermann

Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.


Journal of Physics B | 2008

Improved study of the antiprotonic helium hyperfine structure

T. Pask; D. Barna; A. Dax; R. Hayano; Masaki Hori; D. Horvath; B. Juhász; C. Malbrunot; J. Marton; Nobutaka Ono; K. Suzuki; Johann Zmeskal; E. Widmann

We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n, l) = (37, 35) carried out at the antiproton decelerator (AD) at CERN. We performed laser–microwave–laser resonance spectroscopy using a continuous wave (CW) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of 5 and reduced the linewidth by a factor of 3 compared to our previous results. A comparison of the experimentally measured transition frequencies with three-body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.

Collaboration


Dive into the A. Dax's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Nörtershäuser

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Wei Liu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Biraben

PSL Research University

View shared research outputs
Researchain Logo
Decentralizing Knowledge