Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. de Koter is active.

Publication


Featured researches published by A. de Koter.


Astronomy and Astrophysics | 2001

Mass-loss predictions for O and B stars as a function of metallicity

Jorick S. Vink; A. de Koter; H. J. G. L. M. Lamers

We have calculated a grid of massive star wind models and mass-loss rates for a wide range of metal abundances between 1=100 Z=Z 10. The calculation of this grid completes the Vink et al. (2000) mass-loss recipe with an additional parameter Z. We have found that the exponent of the power law dependence of mass loss vs. metallicity is constant in the range between 1/30 Z=Z 3. The mass-loss rate scales as _ M / Z 0:85 v1 p with p = 1:23 for stars with Te > 25 000 K, and p = 1:60 for the B supergiants with Te 25 000 K, and _ M / Z 0:64 for B supergiants with Te < 25 000 K. Although it is derived that the exponent of the mass loss vs. metallicity dependence is constant over a large range in Z, one should be aware of the presence of bi-stability jumps at specic temperatures. Here the character of the line driving changes drastically due to recombinations of dominant metal species resulting in jumps in the mass loss. We have investigated the physical origins of these jumps and have derived formulae that combine mass loss recipes for both sides of such jumps. As observations of dierent galaxies show that the ratio Fe/O varies with metallicity, we make a distinction between the metal abundance Z derived on the basis of iron or oxygen lines. Our mass-loss predictions are successful in explaining the observed mass-loss rates for Galactic and Small Magellanic Cloud O- type stars, as well as in predicting the observed Galactic bi-stability jump. Hence, we believe that our predictions are reliable and suggest that our mass-loss recipe be used in future evolutionary calculations of massive stars at dierent metal abundance. A computer routine to calculate mass loss is publicly available.


Science | 2012

Binary Interaction Dominates the Evolution of Massive Stars

H. Sana; S. E. de Mink; A. de Koter; N. Langer; C. J. Evans; Mark Gieles; Eric Gosset; Robert G. Izzard; J.-B. Le Bouquin; F. R. N. Schneider

Star Partners Stars more massive than eight times the mass of the Sun are rare and short-lived, yet they are fundamentally important because they produce all the heavy elements in the universe, such as iron, silicon, and calcium. Sana et al. (p. 444) examined the properties of a sample of ∼70 massive stars in six stellar clusters located nearby in our galaxy. Over half of the stars in the sample belong to a binary system and, during the course of their lifetimes, most of the stars in these binaries will interact with one another, either by merging or exchanging mass. Binary interaction may thus affect the evolution of the majority of massive stars. Analysis of a sample of massive stars in our Galaxy implies that most will interact with a nearby companion. The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.


Astronomy and Astrophysics | 2011

Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones

I. Brott; S. E. de Mink; Matteo Cantiello; N. Langer; A. de Koter; C. J. Evans; Ian Hunter; Carrie Trundle; Jorick S. Vink

We present a dense grid of evolutionary tracks and isochrones of rotating massive main-sequence stars. We provide three grids with different initial compositions tailored to compare with early OB stars in the Small and Large Magellanic Clouds and in the Galaxy. Each grid covers masses ranging from 5 to 60 M and initial rotation rates between 0 and about 600 km s−1. To calibrate our models we used the results of the VLT-FLAMES Survey of Massive Stars. We determine the amount of convective overshooting by using the observed drop in rotation rates for stars with surface gravities logg <3.2 to determine the width of the main sequence. We calibrate the efficiency of rotationally induced mixing using the nitrogen abundance determinations for B stars in the Large Magellanic cloud. We describe and provide evolutionary tracks and the evolution of the central and surface abundances. In particular, we discuss the occurrence of quasi-chemically homogeneous evolution, i.e. the severe effects of efficient mixing of the stellar interior found for the most massive fast rotators. We provide a detailed set of isochrones for rotating stars. Rotation as an initial parameter leads to a degeneracy between the age and the mass of massive main sequence stars if determined from its observed location in the Hertzsprung-Russell diagram. We show that the consideration of surface abundances can resolve this degeneracy.


Astronomy and Astrophysics | 2005

On the metallicity dependence of Wolf-Rayet winds

Jorick S. Vink; A. de Koter

A power amplifier device comprising first and second output terminals connected to a loudspeaker, and a power amplifier having a non-inverting input supplied with an audio signal, an output connected to the first output terminal and an inverting input. The second output terminal is grounded through a first resistor and connected to an input of an inverting amplifier having a gain of -1. An output of the inverting amplifier is connected to the inverting input of the power amplifier through a second resistor. The output of the power amplifier is connected to its inverting input through a third resistor. The ratio of the third resistor to the second resistor is selected to be larger than 1 whereby the output impedance of the power amplifier device as seen from the first and second output terminals is made to be negative.


Nature | 2004

The building blocks of planets within the `terrestrial' region of protoplanetary disks

R. van Boekel; M. Min; Christoph Leinert; L. B. F. M. Waters; A. Richichi; O. Chesneau; C. Dominik; W. Jaffe; Anne Dutrey; U. Graser; T. Henning; J. de Jong; R. Köhler; A. de Koter; B. Lopez; F. Malbet; S. Morel; Francesco Paresce; G. Perrin; Thomas Preibisch; Frank Przygodda; M. Schöller; Markus Wittkowski

Our Solar System was formed from a cloud of gas and dust. Most of the dust mass is contained in amorphous silicates, yet crystalline silicates are abundant throughout the Solar System, reflecting the thermal and chemical alteration of solids during planet formation. (Even primitive bodies such as comets contain crystalline silicates.) Little is known about the evolution of the dust that forms Earth-like planets. Here we report spatially resolved detections and compositional analyses of these building blocks in the innermost two astronomical units of three proto-planetary disks. We find the dust in these regions to be highly crystallized, more so than any other dust observed in young stars until now. In addition, the outer region of one star has equal amounts of pyroxene and olivine, whereas the inner regions are dominated by olivine. The spectral shape of the inner-disk spectra shows surprising similarity with Solar System comets. Radial-mixing models naturally explain this resemblance as well as the gradient in chemical composition. Our observations imply that silicates crystallize before any terrestrial planets are formed, consistent with the composition of meteorites in the Solar System.


Astronomy and Astrophysics | 2001

Processing of silicate dust grains in Herbig Ae/Be systems

Jeroen Bouwman; G. Meeus; A. de Koter; S. Hony; C. Dominik; L. B. F. M. Waters

We have analysed the 10 m spectral region of a sample of Herbig Ae/Be (HAEBE) stars. The spectra are dominated by a broad emission feature caused by warm amorphous silicates, and by polycyclic aromatic hydrocarbons. In HD 163296 we nd aliphatic carbonaceous dust, the rst detection of this material in a HAEBE star. The silicate band shows a large variation in shape, due to variable contributions of three components: (i) a broad shoulder at 8.6 m; (ii) a broad maximum at 9.8 m; and (iii) a narrow feature with a broad underlying continuum at 11.3 m. From detailed modeling these features can be identied with silica (SiO2), sub-micrometer sized amorphous olivine grains and micrometer sized amorphous olivine grains in combination with forsterite (Mg2SiO4), respectively. Typical mass fractions are 5 to 10 per cent of crystalline over amorphous olivine, and a few per cent of silica compared to the olivines. The detection of silica in emission implies that this material is heated by thermal contact with other solids that have a high absorptivity at optical to near-IR wavelengths. The observed change in peak position of the silicate band in HAEBE stars from 9.7 m to 11.3 m is dominated by an increase in average grain size, while changes in composition play only a minor r^ ole. The HAEBE stars, Pic and the solar system comet Halley form a sequence of increasing crystallinity. We nd that the abundance of SiO2 tends to increase with increasing crystallinity. This is consistent with the compositional changes expected from thermal annealing of amorphous grains in the inner regions of the disk. We conrm earlier studies that the timescale for crystallisation of silicates in disks is longer than that of coagulation. Our results indicate that the processes that governed grain processing in the proto-solar nebula, are also at work in HAEBE stars.


Astronomy and Astrophysics | 2005

A 10 μm spectroscopic survey of herbig Ae star disks : Grain growth and crystallization

R. van Boekel; M. Min; L. B. F. M. Waters; A. de Koter; C. Dominik; M.E. van den Ancker; Jeroen Bouwman

We present spectroscopic observations of a large sample of Herbig Ae stars in the 10 µm spectral region. We perform compositional fits of the spectra based on properties of homogeneous as well as inhomogeneous spherical particles, and derive the mineralogy and typical grain sizes of the dust responsible for the 10 µm emission. Several trends are reported that can constrain theoretical models of dust processing in these systems: i) none of the sources consists of fully pristine dust comparable to that found in the interstellar medium; ii) all sources with a high fraction of crystalline silicates are dominated by large grains; iii) the disks around more massive stars (M > 2.5 M� , L > 60 L� ) have a higher fraction of crystalline silicates than those around lower mass stars, iv) in the subset of lower mass stars (M < 2.5 M� ) there is no correlation between stellar parameters and the derived crystallinity of the dust. The correlation between the shape and strength of the 10 micron silicate feature reported by van Boekel et al. (2003) is reconfirmed with this larger sample. The evidence presented in this paper is combined with that of other studies to present a likely scenario of dust processing in Herbig Ae systems. We conclude that the present data favour a scenario in which the crystalline silicates are produced in the innermost regions of the disk, close to the star, and transported outward to the regions where they can be detected by means of 10 micron spectroscopy. Additionally, we conclude that the final crystallinity of these disks is reached very soon after active accretion has stopped.


Astronomy and Astrophysics | 2009

Sub-surface convection zones in hot massive stars and their observable consequences

M. Cantiello; N. Langer; I. Brott; A. de Koter; Steven N. Shore; Js Vink; A. Voegler; Dj Lennon; S.C. Yoon

Context. We study the convection zones in the outer envelope of hot massive stars which are caused by opacity peaks associated with iron and helium ionization. Aims. We determine the occurrence and properties of these convection zones as function of the stellar parameters. We then confront our results with observations of OB stars. Methods. A stellar evolution code is used to compute a grid of massive star models at different metallicities. In these models, the mixing length theory is used to characterize the envelope convection zones. Results. We find the iron convection zone (FeCZ) to be more prominent fo r lower surface gravity, higher luminosity and higher initi al metallicity. It is absent for luminosities below about 10 3.2 L⊙, 10 3.9 L⊙, and 10 4.2 L⊙ for the Galaxy, LMC and SMC, respectively. We map the strength of the FeCZ on the Hertzsprung-Russell diagram for three metallicities, and compare this with the occurrence of observational phenomena in O stars: microturbulence, non-radial pulsations, wind clumping, and line profile variabil ity. Conclusions. The confirmation of all three trends for the FeCZ as function o f stellar parameters by empirical microturbulent velociti es argues for a physical connection between sub-photospheric convective motions and small scale stochastic velocities i n the photosphere of O- and B-type stars. We further suggest that clumping in the inner parts of the winds of OB stars could be caused by the same mechanism, and that magnetic fields produced in the FeCZ coul d appear at the surface of OB stars as diagnosed by discrete absorption components in ultraviolet absorption lines.


The Astrophysical Journal | 2013

THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

S. E. de Mink; N. Langer; Robert G. Izzard; H. Sana; A. de Koter

Rotation is thought to be a major factor in the evolution of massive stars—especially at low metallicity—with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20+5 –10% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s–1. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.


Astronomy and Astrophysics | 2007

The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars

M. R. Mokiem; A. de Koter; Jorick S. Vink; J. Puls; C. J. Evans; S. J. Smartt; Paul A. Crowther; A. Herrero; N. Langer; D.J. Lennon; F. Najarro; M. R. Villamariz

We present a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres. The metal content of stars in the Magellanic Clouds is discussed, and a critical assessment is given of state-of-the-art mass-loss determinations of OB stars in these two satellite systems and the Milky-Way. Assuming a powerlaw dependence of mass loss on metal content, u M ∝ Z m , and adopting a theoretical relation between the terminal flow velocity and metal content, v∞ ∝ Z 0.13 (Leitherer et al. 1992, ApJ, 401, 596), we find m = 0.83 ± 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 10 5.2 L� . Within the errors, this result is in agreement with the prediction m = 0.69 ± 0.10 by Vink et al. (2001, A&A, 369, 574). Absolute empirical values for the mass loss, based on Hα and ultraviolet (UV) wind lines, are found to be a factor of two higher than predictions in this high luminosity regime. If this difference is attributed to inhomogeneities in the wind, and this clumping does not impact the predictions, this would imply that luminous O and early-B stars have clumping factors in their Hα and UV line forming regions of about a factor of four. For lower luminosity stars, the winds are so weak that their strengths can generally no longer be derived from optical spectral lines (essentially Hα) and one must currently rely on the analysis of UV lines. We confirm that in this low-luminosity domain the observed Galactic WLR is found to be much steeper than expected from theory (although the specific sample is rather small), leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L ∼ 10 4.75 L� , the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars would turn out to be overestimated as a result of wind clumping, but the degree of clumping would be rather independent of metallicity, the scalings derived in this study are expected to remain correct.

Collaboration


Dive into the A. de Koter's collaboration.

Top Co-Authors

Avatar

H. Sana

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leen Decin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

C. Dominik

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. Herrero

University of La Laguna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge