Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. De Pol is active.

Publication


Featured researches published by A. De Pol.


Cellular and Molecular Life Sciences | 2003

Targeting of the Akt/PKB kinase to the actin skeleton

Vittoria Cenni; Alessandra Sirri; Massimo Riccio; Giovanna Lattanzi; Spartaco Santi; A. De Pol; Nadir M. Maraldi; Sandra Marmiroli

Serine/threonine kinase Akt/PKB intracellular distribution undergoes rapid changes in response to agonists such as Platelet-derived growth factor (PDGF) or Insulin-like growth factor (IGF). The concept has recently emerged that Akt subcellular movements are facilitated by interaction with nonsubstrate ligands. Here we show that Akt is bound to the actin skeleton in in situ cytoskeletal matrix preparations from PDGF-treated Saos2 cells, suggesting an interaction between the two proteins. Indeed, by immunoprecipitation and subcellular fractioning, we demonstrate that endogenous Akt and actin physically interact. Using recombinant proteins in in vitro binding and overlay assays, we further demonstrate that Akt interacts with actin directly. Expression of Akt mutants strongly indicates that the N-terminal PH domain of Akt mediates this interaction. More important, we show that the partition between actin bound and unbound Akt is not constant, but is modulated by growth factor stimulation. In fact, PDGF treatment of serum-starved cells triggers an increase in the amount of Akt associated with the actin skeleton, concomitant with an increase in Akt phosphorylation. Conversely, expression of an Akt mutant in which both Ser473 and Thr308 have been mutated to alanine completely abrogates PDGF-induced binding. The small GTPases Rac1 and Cdc42 seem to facilitate actin binding, possibly increasing Akt phosphorylation.


European Journal of Histochemistry | 2010

Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures

Massimo Riccio; Elisa Resca; Tullia Maraldi; Alessandra Pisciotta; Adriano Ferrari; Giacomo Bruzzesi; A. De Pol

The aim of this study was to characterize the in vitro osteogenic differentiation of dental pulp stem cells (DPSCs) in 2D cultures and 3D biomaterials. DPSCs, separated from dental pulp by enzymatic digestion, and isolated by magnetic cell sorting were differentiated toward osteogenic lineage on 2D surface by using an osteogenic medium. During differentiation process, DPSCs express specific bone proteins like Runx-2, Osx, OPN and OCN with a sequential expression, analogous to those occurring during osteoblast differentiation, and produce extracellular calcium deposits. In order to differentiate cells in a 3D space that mimes the physiological environment, DPSCs were cultured in two distinct bioscaffolds, Matrigel™ and Collagen sponge. With the addition of a third dimension, osteogenic differentiation and mineralized extracellular matrix production significantly improved. In particular, in Matrigel™ DPSCs differentiated with osteoblast/osteocyte characteristics and connected by gap junction, and therefore formed calcified nodules with a 3D intercellular network. Furthermore, DPSCs differentiated in collagen sponge actively secrete human type I collagen micro-fibrils and form calcified matrix containing trabecular-like structures. These neo-formed DPSCs-scaffold devices may be used in regenerative surgical applications in order to resolve pathologies and traumas characterized by critical size bone defects.


Leukemia | 2014

Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis.

Jessika Bertacchini; Marianna Guida; Benedetta Accordi; Laura Mediani; Alberto M. Martelli; P. Barozzi; Emanuel F. Petricoin; Lance A. Liotta; G Milani; M Giordan; Mario Luppi; Fabio Forghieri; A. De Pol; Lucio Cocco; Giuseppe Basso; Sandra Marmiroli

Acute myeloid leukemia (AML) primary cells express high levels of phosphorylated Akt, a master regulator of cellular functions regarded as a promising drug target. By means of reverse phase protein arrays, we examined the response of 80 samples of primary cells from AML patients to selective inhibitors of the phosphatidylinositol 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis. We confirm that >60% of the samples analyzed are characterized by high pathway phosphorylation. Unexpectedly, however, we show here that targeting Akt and mTOR with the specific inhibitors Akti 1/2 and Torin1, alone or in combination, result in paradoxical Akt phosphorylation and activation of downstream signaling in 70% of the samples. Indeed, we demonstrate that cropping Akt or mTOR activity can stabilize the Akt/mTOR downstream effectors Forkhead box O and insulin receptor substrate-1, which in turn potentiate signaling through upregulation of the expression/phosphorylation of selected growth factor receptor tyrosine kinases (RTKs). Activation of RTKs in turn reactivates PI3K and downstream signaling, thus overruling the action of the drugs. We finally demonstrate that dual inhibition of Akt and RTKs displays strong synergistic cytotoxic effects in AML cells and downmodulates Akt signaling to a much greater extent than either drug alone, and should therefore be explored in AML clinical setting.


Molecular Human Reproduction | 2009

MATER protein as substrate of PKCε in human cumulus cells

Tullia Maraldi; Massimo Riccio; Paola Sena; Laura Marzona; A. Nicoli; A. La Marca; Sandra Marmiroli; Jessika Bertacchini; G.B. La Sala; A. De Pol

High activity of the phosphoinositide 3-kinase/Akt pathway in cumulus cells plays an important role in FSH regulation of cell function and Protein Kinase C epsilon (PKCepsilon) collaborates with these signalling pathways to regulate cell proliferation. Relevant roles in follicular development are played by Maternal Antigen That Embryos Require (MATER) that is a cumulus cell- and oocyte-specific protein dependent on the maternal genome. We recently demonstrated that human MATER localizes at specific domains of oocytes and, for the first time, also in cumulus cells. MATER contains a carboxy-terminal leucine-rich repeat domain involved in protein-protein interactions regulating different cellular functions. Here we investigated the functional role of MATER. Thus, we performed coimmunoprecipitation experiments using HEK293T cells expressing human MATER; a similar approach was then followed in human cumulus/follicular cells. In MATER(+)HEK293T cells, we observed that this protein acts as a phosphorylation substrate of PKCepsilon. Western blot experiments indicate that, unlike oocytes, human cumulus cells express PKCepsilon. Immunoprecipitation and confocal analysis suggest for the first time that MATER protein interacts with this protein kinase in cumulus cells under physiological conditions. Since PKCepsilon is known to collaborate with antiapoptotic signalling pathways, this suggests a novel mechanism for the function of MATER in follicular maturation.


Life Sciences | 2013

Ferutinin promotes proliferation and osteoblastic differentiation in human amniotic fluid and dental pulp stem cells

Manuela Zavatti; Elisa Resca; Laura Bertoni; Tullia Maraldi; Marianna Guida; Gianluca Carnevale; Adriano Ferrari; A. De Pol

AIMS The phytoestrogen Ferutinin plays an important role in prevention of osteoporosis caused by ovariectomy-induced estrogen deficiency in rats, but there is no evidence of its effect on osteoblastic differentiation in vitro. In this study we investigated the effect of Ferutinin on proliferation and osteoblastic differentiation of two different human stem cells populations, one derived from the amniotic fluid (AFSCs) and the other from the dental pulp (DPSCs). MAIN METHODS AFSCs and DPSCs were cultured in a differentiation medium for 14 or 21days with or without the addition of Ferutinin at a concentration ranging from 10(-11) to 10(-4)M. 17β-Estradiol was used as a positive drug at 10(-8)M. Cell proliferation and expression of specific osteoblast phenotype markers were analyzed. KEY FINDINGS MTT assay revealed that Ferutinin, at concentrations of 10(-8) and 10(-9)M, enhanced proliferation of both AFSCs and DPSCs after 72h of exposure. Moreover, in both stem cell populations, Ferutinin treatment induced greater expression of the osteoblast phenotype markers osteocalcin (OCN), osteopontin (OPN), collagen I, RUNX-2 and osterix (OSX), increased calcium deposition and osteocalcin secretion in the culture medium compared to controls. These effects were more pronounced after 14days of culture in both populations. SIGNIFICANCE The enhancing capabilities on proliferation and osteoblastic differentiation displayed by the phytoestrogen Ferutinin make this compound an interesting candidate to promote bone formation in vivo.


Placenta | 2015

Enrichment in c-Kit improved differentiation potential of amniotic membrane progenitor/stem cells

Elisa Resca; Manuela Zavatti; Tullia Maraldi; Laura Bertoni; Francesca Beretti; Marianna Guida; G.B. La Sala; Pascale V. Guillot; Anna L. David; Nj Sebire; A. De Pol; P De Coppi

INTRODUCTION Human term placenta has attracted increasing attention as an alternative source of stem cells for regenerative medicine since it is accessible without ethical objections. The amniotic membrane (AM) contains at least two stem cell types from different embryological origins: ectodermal amniotic epithelial stem cells, and mesodermal mesenchymal stromal cells. Among the second group we studied the characteristics of amniotic mesenchymal cells (AMC) versus the ones enriched for the commonly used surface marker c-Kit (amniotic progenitor/stem cells-ASC), a stem cell factor receptor with crucial functions in a variety of biological systems and presents in early progenitors of different origin, as been already demonstrated in the enriched chorionic stem cells. METHODS After isolation, cells from the amniotic membranes (amniotic cells-AC) were selected for c-Kit (ASC) and compared these cells with c-Kit unselected (AMC), evaluating the expression of other stem cell markers (Oct-4, Tra-1-81, SSEA-4), CD271 and Slug. RESULTS Immunofluorescence analysis showed that ASC cells exhibited greater stem cell marker expression and included more CD271 and Slug positive cells. This was consistent with the interpretation that c-Kit enriched AC show greater stemness capacity compared to c-Kit unselected AMC. DISCUSSION AMC and ASC can both differentiate into various cell types including adipogenic, osteogenic, chondrogenic, neurogenic and hepatic lineages, but the enrichment in c-Kit improved stemness and differentiation potential of ASC.


British Journal of Dermatology | 2015

CD271 is expressed in melanomas with more aggressive behaviour, with correlation of characteristic morphology by in vivo reflectance confocal microscopy.

Francesca Beretti; Paola Manni; Caterina Longo; Giuseppe Argenziano; Francesca Farnetani; A.M. Cesinaro; Alexander Witkowski; A. De Pol; Giovanni Pellacani

Melanoma is the most highly aggressive type of skin cancer. Its resistance to existing treatments and the rapid rise in incidence underscore the importance of acquiring a better understanding of melanomagenesis.


Life Sciences | 2016

Estrogen receptor signaling in the ferutinin-induced osteoblastic differentiation of human amniotic fluid stem cells.

Manuela Zavatti; Marianna Guida; Tullia Maraldi; Francesca Beretti; Laura Bertoni; G.B. La Sala; A. De Pol

AIMS Ferutinin is a diaucane sesquiterpene with a high estrogenic activity. Since ferutinin is able to enhance osteoblastic differentiation of human amniotic fluid stem cells (hAFSCs), the aim of this study was to evaluate the role of the estrogen receptors α (ERα) and G-protein coupled receptor 30 (GPR30) in ferutinin-mediated osteoblastic differentiation. Moreover, it was investigated if MEK/ERK and PI3K/Akt signaling pathways are involved in ferutinin-induced effects. MAIN METHODS hAFSCs were cultured in a standard medium or in an osteoblastic medium for 14 or 21days and ferutinin was added at 10-8M. Immunofluorescence techniques and Western-blot 21analysis were used to study estrogen receptors and signaling pathways. KEY FINDINGS In both undifferentiated and differentiated hAFSCs we identified ERα and GPR30 with a nuclear or cytoplasmatic localization, respectively. The presence of ferutinin in the osteoblastic medium leads to an increase in ERα expression. To dissect the role of estrogen receptors, MPP and G15 were used to selectively block ERα and GPR30, respectively. Notably, ferutinin enhanced osteoblastic differentiation in cells challenged with G15. Ferutinin was able to increase ERK and Akt phosphorylations with a different timing activation. These phosphorylations were antagonized by PD0325901, a MEK inhibitor, and wortmannin, a PI3K inhibitor. Both MPP and G15 inhibited the ferutinin-induced MEK/ERK and PI3K/Akt pathway activations. In the osteoblastic condition, PD0325901, but not wortmannin, reduced the expression of OPN and RUNX-2, whereas ferutinin abrogated the down-modulation triggered by PD0325901. SIGNIFICANCE PI3K/Akt pathways seems to mediate the enhancement of hAFSCs osteoblastic differentiation triggered by ferutinin through ERα.


Placenta | 2013

Enrichment in c-Kit+ enhances mesodermal and neural differentiation of human chorionic placental cells

Elisa Resca; Manuela Zavatti; Laura Bertoni; Tullia Maraldi; S. De Biasi; Alessandra Pisciotta; A. Nicoli; G.B. La Sala; Pascale V. Guillot; Anna L. David; Nj Sebire; P De Coppi; A. De Pol


Archive | 2016

c-FLIPS/L plays a major role in modulating survival and immune escape mechanisms in intrahepatic cholangiocarcinoma (IHCCA): a study on primary human cell cultures

Vincenzo Cardinale; D. Alvaro; Eugenio Gaudio; Lara Gibellini; Alessandra Pisciotta; A. De Pol; G Carpino; Andrea Cossarizza; L. Nevi; Gianluca Carnevale; S. De Biasi

Collaboration


Dive into the A. De Pol's collaboration.

Top Co-Authors

Avatar

Tullia Maraldi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Marianna Guida

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Massimo Riccio

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Alessandra Pisciotta

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elisa Resca

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Francesca Beretti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Gianluca Carnevale

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Laura Bertoni

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Manuela Zavatti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

S. De Biasi

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge